2.1: FREQUENCY DISTRIBUTIONS

Frequency Distribution: organization of _____ data into groups called ____________.

A: Categorical Frequency Distribution – used for ___________ and ____________ level qualitative data that can be put into categories.

Ex 1). A sample of 21 M&M’s is observed and their colors are recorded.

<table>
<thead>
<tr>
<th>Color</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: Grouped Frequency Distribution – used for quantitative data with a __________ __________.

Steps:
1. Find the minimum and maximum values
2. Calculate the range: _____________________________________
3. To find the width:
4. Always round the width up! If a whole number, round up to the next whole number.
5. Begin the first class with the minimum value in the data set and add the width to get the start of the next class (the lower limit). Continue adding down until you reach your final class. Then fill in the upper limits.

Ex 2). Blood glucose levels for a sample of 60 participants is recorded. Organize into a grouped frequency distribution using 6 classes.

Width =

<table>
<thead>
<tr>
<th>55</th>
<th>115</th>
<th>118</th>
<th>114</th>
<th>59</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>97</td>
<td>90</td>
<td>59</td>
<td>105</td>
<td>81</td>
</tr>
<tr>
<td>84</td>
<td>81</td>
<td>82</td>
<td>61</td>
<td>103</td>
<td>77</td>
</tr>
<tr>
<td>92</td>
<td>76</td>
<td>68</td>
<td>86</td>
<td>97</td>
<td>80</td>
</tr>
<tr>
<td>77</td>
<td>85</td>
<td>69</td>
<td>62</td>
<td>101</td>
<td>83</td>
</tr>
<tr>
<td>58</td>
<td>83</td>
<td>101</td>
<td>86</td>
<td>84</td>
<td>78</td>
</tr>
<tr>
<td>59</td>
<td>92</td>
<td>88</td>
<td>97</td>
<td>87</td>
<td>92</td>
</tr>
<tr>
<td>70</td>
<td>86</td>
<td>72</td>
<td>84</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>101</td>
<td>80</td>
<td>93</td>
<td>56</td>
<td>65</td>
<td>91</td>
</tr>
<tr>
<td>75</td>
<td>78</td>
<td>100</td>
<td>74</td>
<td>74</td>
<td>90</td>
</tr>
</tbody>
</table>

Boundaries: numbers given that separate the classes so that there are ____ ________ in the frequency distribution. Used when graphing a ____________________.
Ex 3). Find the boundaries, widths, and midpoints of the following classes.

a) $6 - 12$

b) $5.5 - 9.5$

c) $6.23 - 9.14$

d) $1.123 - 13.324$

Rules/Guidelines for Constructing a Frequency Distribution

1. There should be between _____ and _____ classes.
2. It is preferable but not absolutely necessary that the class width be an ______ number.
 a. This makes the midpoint have the same place value as the original data.
 i. Odd Width: 2 – 8
 ii. Even Width: 2 – 9
3. The classes must be ___________ ______________ (no overlap).
4. The classes must be _______________ (no gaps).
5. The classes must be _______________ (enough classes to accommodate all data).
6. The classes must be of _________ width (avoids distorted views of the data).

Exception to Rule #6: Open-Ended Frequency Distribution – When the first class has no specific beginning value or the last class has no specific ending value.

C: Cumulative Frequency Distribution – Shows number of data values ______ _______ or equal to a specific value (usually the upper ________________). Used to construct an _________.

Ex 4). Construct a Cumulative Frequency Distribution for the glucose levels in Example 2.

<table>
<thead>
<tr>
<th>Boundaries</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.5 – 65.5</td>
<td>10</td>
</tr>
<tr>
<td>65.5 – 76.5</td>
<td>8</td>
</tr>
<tr>
<td>76.5 – 87.5</td>
<td>21</td>
</tr>
<tr>
<td>87.5 – 98.5</td>
<td>11</td>
</tr>
<tr>
<td>98.5 – 109.5</td>
<td>7</td>
</tr>
<tr>
<td>109.5 – 120.5</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
</tr>
</tbody>
</table>
D: Ungrouped Frequency Distribution – Used when the range of data values is relatively ________.
A single data value is used for each class. The width is ________.

Ex 5). The following data represent the number of hours of TV viewing per week for 20 people. Construct an ungrouped frequency distribution.

<table>
<thead>
<tr>
<th>7</th>
<th>5</th>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Reasons for Constructing Frequency Distributions:
1. To _____________________ the data in a meaningful, intelligible way
2. To enable the reader to determine the __________ or _________ of the distribution
3. To facilitate computational procedures for measures of _________________ and spread (Chapter 3)
4. To enable the researcher to draw _______ and ________ for the presentation of data
5. To enable the reader to make ____________________ among different data sets.

Homework: pg. 46 #1 – 9
2.2 - HISTOGRAMS
FREQUENCY POLYGONS & OGIVES

Complete the following while watching the video.

1. “By figuring out a way to display your data you can start to see ____________ and make ____________ about what those data mean.”

2. What are the two striking features of the histogram that Pardis points out?

3. What are the data that stand out from the rest of the data called?

4. Explain what a “right skewed” histogram looks like.

HISTOGRAM:

__
__

STEPS:

1. Draw and label the x and y axes.

2. Represent the frequency on the y-axis and the class boundaries on the x-axis.

3. Using the frequencies as the heights, draw vertical bars for each class. Bars must be touching.
FREQUENCY POLYGON:

STEPS:

1. Find the midpoints for each class.
2. Draw the x and y axes. Label the x-axis with the midpoints and the y-axis with a suitable scale for the frequencies.
3. Plot each point.
4. Connect the adjacent points with line segments. Draw a line back to the x-axis at the beginning and the end of the graph, at the same distance that the previous and next midpoints would be located.

OGIVE:

STEPS:

1. Find the cumulative frequency for each class.
2. Draw the x and y axes. Label the x-axis with the class boundaries. Label the y-axis with a suitable scale for the cumulative frequencies.
3. Plot the cumulative frequency at each upper class boundary. Upper boundaries are used since the cumulative frequencies represent the number of data values accumulated up to the upper boundary of each class.
4. Connect the adjacent points with line segments. Then extend the graph to the first lower class boundary on the x-axis.
RELATIVE FREQUENCY GRAPHS:

*Useful when it is more important to know the proportion of data within each category than the actual number of data values in the classes. Often used to compare two data values.

STEPS:

1. Convert each frequency to a proportion or relative frequency (percent).
2. Find the cumulative relative frequency. Should always add to 100%.
3. Draw each graph. For the histogram and ogive, use the class boundaries along the x-axis. For the frequency polygon, use the midpoints on the x-axis. The scale on the y-axis uses proportions.

DISTRIBUTION SHAPES:

- Bell-Shaped
- Uniform
- Right-Skewed
- Left-Skewed
- Bimodal
- U-Shaped

Homework: pg. 61 #1, 2, 4 (all graphs are to be completed on graph paper, neatly with a ruler)
2.3 — Bar Graphs, Pareto Charts, Time Series Graphs, & Pie Charts

Bar Graph:

*Used for _______________ or ______________ data.

STEPS:

1. Draw and label the x and y axes. The x-axis is the frequency, where the y-axis represents the categories.
2. Draw the bars corresponding to the frequencies. The bars should **not** touch.

Pareto Charts:

*Used for qualitative or categorical data.

STEPS:

1. Arrange the data from the largest to the smallest according to frequency.
2. Draw and label the x and y axes.
3. Draw the bars corresponding to the frequencies.
Time Series Graph:

STEPS:

1. Draw and label the x and y axes
2. Label the x-axis for the time and the y-axis for the frequency
3. Plot each point according to the table
4. Draw line segments connecting adjacent points. Do not try to fit a smooth curve through the data points.

A Compound Time Series Graph compares two or more data sets on the same graph.

The Pie Chart:

STEPS:

1. Since there are 360° in a circle, the frequency of each class must be converted to represent a proportional part of the circle. To convert:

 Degrees =

2. Each frequency must also be converted to a percentage (%).

 % =

3. Using a protract and compass, draw the graph using the appropriate degree measures found in Step 1. Label each section with the name and percentages.
In class example page 84, #4: Construct a pie chart:

Homework: pg. 84 #1, 3, 7, 10
2.3 - Misleading Graphs & Stem and Leaf Plots

Complete the following while watching the video. Against All Odds: Episode 2

1. What is the first thing you need to do before creating a stem and leaf plot?

2. The “stem” includes the _______ digit
3. The “leaf” includes the _______ digit

4. “Even ____________ stems that don’t have leaves to go with them.”

5. A stem plot helps you see:
 a. ________________
 b. ________________
 c. ________________
 d. ________________

Watch for possibly misleading graphs in the following four ways:

1. Truncating the scale on the vertical axis (pg. 77, 78)
2. Exaggerating a one-dimensional increase by showing it in two dimensions (pg. 79)
3. Omitting labels or units on the axes of the graph (pg. 79).
4. All graphs should contain a source for the information presented (pg. 80)

Stem and Leaf Plots:

*Stem and Leaf plots have the advantage over a grouped frequency distribution of retaining the actual data while showing them in graphical form.

STEPS:

1. Arrange the data in order (not essential, but helpful). The leaves in the final stem & leaf should be arranged in order.

2. Separate the data according to the first digit.

3. Make a display by using the leading digit as the stem and the trailing digit as the leaf.
4. If there are no data values in a class, write the stem number and leave the leaf row blank. Do not put a zero in the leaf row.
5. When the data values are in the hundreds, such 586, the stem is 58 and the leaf is 6.
6. When you analyze a stem and leaf plot, look for peaks and gaps in the distribution.
Ex 1). Complete a stem and leaf plot for the list of grades on a recent test in Geometry.

73, 42, 67, 78, 99, 84, 91, 82, 86, 94

Ex 2). Complete a back to back stem and leaf plot comparing the two classes on a recent test. Compare the two classes.

Mod 1-2: 78, 67, 79, 81, 45, 91, 93, 66, 80, 81

Mod 12-13: 97, 88, 69, 80, 73, 81, 75, 81, 96, 95

Homework: pg. 84 #13, 14, 15, 17, 24, 25