The final will consist of:
100 Multiple choice questions (can cover topics from the entire year)
Free Response questions similar to the back of this packet (only the second semester topics)

You may use a 3 " $x 5$ " note card on your exam provided the note card is turned in prior to the end of class on the last school day before exams start. There are no exceptions. Even if you are absent, the card needs to be here.

Major topics covered

Chapter 1 Chemistry an Introduction

Theory
Law

Scientific Method
Lab safety

Chapter 2 Measurements and Calculations

Sig figs
Dimensional analysis (field goals)
Metric system
Density

Chapter 3 Matter

Elements
Compounds
Mixture
Homogeneous/heterogeneous

Chapter 4 Chemical Foundations

Subatomic particles
Proton

Neutrons
Electrons

Nucleus
Rutherford

Thomson

Periodic Table
Periodic trends

Metals

Nonmetals

Metalloids

Alkali metals
Alkaline Earth Metals

Transition metals
Halogens
Noble gases

Chapter 5 Nomeclature

Ions
Cations
Anions
Ionic bonding
Polyatomic ions

Naming ionic compounds
Determining ionic formulas
Ionic dissociation

Molar mass
Covalent Naming
Covalent Prefixes
Naming Acids

Chapter 6 Chemical Reactions

Products

Reactants

Energy
Exothermic

Endothermic
Balancing Equations

Chapter 7 Reactions in an aqueous solution

Precipitate
Redox reaction
Combustion Reaction

Single Replacement Reaction
Double Replacement reaction
Synthesis Reaction
Double Replacement Reaction
Net Ionic Equation

Spectator Ions
Acid Base Reactions

Chapter 8 Chemical Composition

Mole
Molar Mass
Mole gram conversion
Mole atom conversion

Chapter 9 Chemical Quantities

Stoichiometry
Limiting reactants
Percent Yield
Mole atom conversion

Chapter 10 Energy

Convection
Conduction
Radiation
Enthapy
Heat
Temperature
Kinetic energy
Entropy
$\mathrm{q}=\mathrm{nC} \Delta \mathrm{T}$
$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

$$
\mathrm{q}=\mathrm{Hn}
$$

Absolute zero

Chapter 11 Modern Atomic Theory

Bohr

Heisenberg
Orbitals
Energy levels
Electron configuration
Quantum numbers

Chapter 12 Chemical Bonding

Covalent bonding
Electronegativity
Polar Covalent Bond

Nonpolar covalent bond
Determining the type of bond
Lewis dot structures
VSEPR

Shapes of Molecules

Chapter 13 Gases

Boyle's Law
Charles' Law
Avagadro's Law

Gay Lussac's Law
Pressure
Combined Gas Law

Ideal Gas Law
Diffusion

Effusion
Graham's Law of Effusion

Chapter 14 Liquids and Solids

Kinetic Molecular Theory
Solid

Liquid
Gas

Evaporation
Volatility
Phase Changes

Chapter 15 Solutions

Suspensions
Colloids
Tyndall Effect
Solutions

Solute
Solvent
Polarity of solvent (like dissolves like)

Concentration
Molarity
Saturated

Supersaturated
Mole fraction
Molality
Freezing point depression
Boiling point elevation

Chapter 16 Acids and Bases

Acids

Bases
Hydronium
Hydroxide
pH
pOH
Equivalence point
Titration

Dilution
Neutralization

Salts

Chapter 17 Equilibrium

Equilibrium

Le Châtelier's Principle

Shifting of equilibrium
Buffers

Indicators
Acidosis/alkanosis
Equilibrium Expression
K
$\mathrm{K}_{\text {sp }}$ (solubility)

Chapter 18 Oxidation Reduction

Oxidation
Reduction

Oxidation numbers (states)
Galvanic Cell
Electric potential
Anode
Cathode
Corrosion
Electrolysis
Battery

Chapter 19 Nuclear Chemistry

Radiation
Alpha (α) Radiation
Beta (β) Radiation

Gamma (γ) Radiation

Showing α decay
Showing β decay
Half life
Determining the age using half life
Radiodating of objects
Fission

Fusion
Transmutation

Meltdown

Nuclear Winter
Nuclear Medicine
X Ray
CT Scan

MRI

Chapter 20 \& 21 Organic Chemistry and Biochemistry

Naming Organic Compounds (root words)
Alkanes
Alkenes

Alkynes
Cyclic hydrocarbons
Isomers
Ketones

Aldehydes

Alcohols

Carboxylic acids

Polymerization

Polymers
Elastomers

Plastics

Fibers

Petroleum

Proteins

Carbohydrates
Lipids
Nucleic Acids

DNA

RNA

Practice Problems for the Chemistry Final

$\mathrm{q}=\mathrm{nC} \Delta \mathrm{T}$
$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$
$\mathrm{q}=\mathrm{H} \mathrm{n}$
$\mathrm{q}_{\text {lost }}=\mathrm{q}_{\text {gained }}$

1. How much heat is required to heat 1.8 mol of aluminum from 250 K to 320 K ?
2. If 43 kJ of heat are added to 41 mol of silver at $18^{\circ} \mathrm{C}$ what will its final temperature be?

This includes a phase change
3. How much heat is required to heat 5.9 moles of solid lead at 592 K to 630 K ?
4. A solution of vinegar has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 1.45×10^{-5}, what is its $\mathrm{pH}, \mathrm{pOH}$, and $\left[\mathrm{OH}^{-}\right]$?
5. A solution of milk of magnesia has a pH of 10.6 , what is its $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and pOH?
6. A solution of ammonia has a $\left[\mathrm{OH}^{-}\right]$of 5.87×10^{-4}, what is its $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}$, and pOH ?
7. If 27 g of HNO_{3} are dissolved in 1.2 L , what concentration will the solution be?
8. A water solution of calcium sulfate, CaSO_{4}, has a mass percent of 24.0%, determine its molarity if the solution has a density of $1.12 \mathrm{~g} / \mathrm{mL}$.
9. Calculate the molality of a 2.9 M solution of Iron II Nitrate, $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$, in water if the solution has a density of $1.09 \mathrm{~g} / \mathrm{mL}$.
10. Find the freezing point of the 1.25 m solution of a water solution of strontium chloride.
11. Show the beta decay C-14
12. Show the alpha decay followed by the beta decay of Ra- 230
13. Show the alpha decay followed by another alpha decay of W-186
14. Show the beta decay followed by another beta followed by the alpha decay of decay of K-40.
15. If you originally had 125 g of $\mathrm{K}-40$, you now have 32 g left. How much time has passed?
16. If you originally had 37 g of $\mathrm{H}-3$ and you now have 14 g left. How much time has passed?
17. Balance the following in an acid $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{S}^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{S}$
18. Balance the following in a base $\mathrm{CrO}_{2}^{-}+\mathrm{ClO}^{-} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+\mathrm{Cl}^{-}$

Determine the electric potential and the full redox equation of a cell based on the following
19. $\mathrm{Zn} / \mathrm{Zn}^{2+} \& \mathrm{Cu} / \mathrm{Cu}^{2+}$
20. $\mathrm{K} / \mathrm{K}^{+} \& \mathrm{Sn} / \mathrm{Sn}^{2+}$
21. Draw the skeleton structure and give the molecular formula of 4-bromo 3-methyl 1-octyne.
22. Draw the skeleton structure and give the molecular formula for 2,2 dimethyl 3 chloro 5 bromo 1 cyclohexanol
23. Draw the skeleton structure and give the molecular formula of 2-bromo 3-methyl cyclohexanone.
24. Draw the skeleton structure and give the molecular formula of 3-ethyl 2 methyl hexanoic acid.

