\qquad

To do these calculations, use the equation $\mathbf{p H}=-\boldsymbol{\operatorname { l o g }}\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$, to reverse it
$\mathbf{1 0}^{-\mathrm{pH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. In any solution hydronium concentration in moles/liter (M) multiplied by the hydroxide concentration (M) will equal $1 \times 10^{-14} .\left[\mathrm{H}_{\mathbf{3}} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathbf{1 \times 1 0} \mathbf{1 0}^{-14}$ $\mathbf{p H}+\mathbf{p O H}=14$.

1. If a solution has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $4.61 \times 10^{-11} \mathrm{M}$, what is the pH of the solution? What is the hydroxide conc.? What is the pOH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
2. If a solution has a pH of 5.42 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the solution? What is the hydroxide conc.? What is the pOH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
3. If a solution has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $1.76 \times 10^{-3} \mathrm{M}$, what is the pH of the solution? What is the hydroxide conc.? What is the pOH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
4. If a solution has a pOH of 7.55 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the solution? What is the hydroxide conc.? What is the pH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
5. If a solution has a $\left[\mathrm{OH}^{-}\right]$of $4.43 \times 10^{-10} \mathrm{M}$, what is the hydronium conc.? What is the pH of the solution? What is the pOH ?
pH=
$\mathrm{pOH}=$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
6. If a solution has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $2.61 \times 10^{-5} \mathrm{M}$, what is the pH of the solution? What is the hydroxide conc.? What is the pOH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
7. If a solution has a pH of 9.80 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the solution? What is the hydroxide conc.? What is the pOH ?
$\mathrm{pH}=$
$\mathrm{pOH}=$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
8. If a solution has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $2.6 \times 10^{-8} \mathrm{M}$, what is the pH of the solution? What is the hydroxide conc.? What is the pOH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
9. If a solution has a pOH of 2.85 , what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the solution? What is the hydroxide conc.? What is the pH ?
pH=
pOH=
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$
$\left[\mathrm{OH}^{-}\right]=$
