Name_____

Equilibrium Worksheet

1. The decomposition of CaCO₃ is an endothermic process (you are smart enough to determine which side of the equations get the words "+ Heat" using this):

 $CaCO_3(s) \leftrightarrows CaO(s) + CO_2(g)$

- a) Use Lechâtlier's Principle to explain how an increase in temperature would affect the equilibrium (answer either shift left or shift right).
- b) If more CO₂ is added to a flask in which this equilibrium exists, how is the equilibrium affected?
- c) If pressure within a flask in which this equilibrium exists is increased, how is the equilibrium affected (consider the effect on the concentration of all gases present)?
- 2. Calculate Q and determine the direction the reaction will shift $H_2 + F_2 \rightleftharpoons 2 \text{ HF}$ $K = 1.15 \text{ x} 10^2$

 $[H_2] = .0010$ $[F_2] = 5.0 \times 10^{-3}$ [HF] = .50 M

 $[H_2] = .020$ $[F_2] = 2.0 \times 10^{-3}$ $[HF] = 5.0 \times 10^{-4} M$

3. The reaction below has an equilibrium constant, K, of 171 at 25°C. Using the reaction conditions given, determine the concentration of the other compound at equilibrium.

$2 \text{ NO}_2(g) \leftrightarrows \text{N}_2\text{O}_4(g)$

a) 2.0x10⁻² M NO₂

b) 2.1 M N₂O₄

- c) $2.0x10^{-3}$ mol NO₂ in a 5.0 mL flask
- 4. An equilibrium mixture contains 3.00 moles of carbon monoxide, 2.00 moles of chlorine gas, and 9.00 moles of COCl₂ gas in a 50.0 L reaction vessel at 800 K. Calculate K at this temperature. The reaction occurring is:

 $CO(g) + Cl_2(g) \leftrightarrows COCl_2(g)$

5. At 20°C the equilibrium constant K is 1.4×10^{30} , for the reaction:

$$2NO(g) \Leftrightarrow N_2(g) + O_2(g)$$

In the atmosphere at room temperature the concentration of nitrogen gas is 0.33 mol/L and the concentration of oxygen gas is 27% that value. Calculate the equilibrium concentration of nitrogen monoxide in the atmosphere.

6. Calculate the solubility and maximum concentrations of solutes in a saturated solutions for the following:

Ag₂ CrO₄ (s) \Rightarrow 2 Ag⁺(aq) + CrO₄²⁻(aq) K_{sp} = 2.0x10⁻¹²

 $PbF_2(s) \leftrightarrows Pb^{2+}(aq) + 2 F^-(aq)$ $K_{sp} = 3.7 \times 10^{-8}$

$$Zn(OH)_2$$
 (s) \leftrightarrows $Zn^{2+}(aq) + 2 OH^-$ (aq) $K_{sp} = 5 \times 10^{-17}$