Name \qquad

Equilibrium Worksheet

1. The decomposition of CaCO_{3} is an endothermic process (you are smart enough to determine which side of the equations get the words "+ Heat" using this):

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

a) Use Lechâtlier's Principle to explain how an increase in temperature would affect the equilibrium (answer either shift left or shift right).
b) If more CO_{2} is added to a flask in which this equilibrium exists, how is the equilibrium affected?
c) If pressure within a flask in which this equilibrium exists is increased, how is the equilibrium affected (consider the effect on the concentration of all gases present)?
2. Calculate Q and determine the direction the reaction will shift $\mathrm{H}_{2}+\mathrm{F}_{2} \rightleftharpoons 2 \mathrm{HF} \quad \mathrm{K}=1.15 \times 10^{2}$
$\left[\mathrm{H}_{2}\right]=.0010$
$\left[\mathrm{F}_{2}\right]=5.0 \times 10^{-3}$
$[\mathrm{HF}]=.50 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=.020$
$\left[\mathrm{F}_{2}\right]=2.0 \times 10^{-3}$
$[\mathrm{HF}]=5.0 \times 10^{-4} \mathrm{M}$
3. The reaction below has an equilibrium constant, K , of 171 at $25^{\circ} \mathrm{C}$. Using the reaction conditions given, determine the concentration of the other compound at equilibrium.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

a) $\quad 2.0 \times 10^{-2} \mathrm{M} \mathrm{NO}_{2}$
b) $\quad 2.1 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{4}$
c) $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{NO}_{2}$ in a 5.0 mL flask
4. An equilibrium mixture contains 3.00 moles of carbon monoxide, 2.00 moles of chlorine gas, and 9.00 moles of COCl_{2} gas in a 50.0 L reaction vessel at 800 K . Calculate K at this temperature. The reaction occurring is:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{COCl}_{2}(\mathrm{~g})
$$

5. At $20^{\circ} \mathrm{C}$ the equilibrium constant K is 1.4×10^{30}, for the reaction:

$$
2 \mathrm{NO}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

In the atmosphere at room temperature the concentration of nitrogen gas is 0.33 $\mathrm{mol} / \mathrm{L}$ and the concentration of oxygen gas is 27% that value. Calculate the equilibrium concentration of nitrogen monoxide in the atmosphere.
6. Calculate the solubility and maximum concentrations of solutes in a saturated solutions for the following:

$$
\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \leftrightarrows 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{sp}}=2.0 \times 10^{-12}
$$

$$
\mathrm{PbF}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{sp}}=3.7 \times 10^{-8}
$$

$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{sp}}=5 \times 10^{-17}$

