Name \qquad
Molarity Problems
$\operatorname{Molarity}(\mathrm{M})=\frac{m o l}{L}$

1. What concentration of solution would be prepared in 32 g of CuCl_{2} we dissolved in 134 mL of water?
2. What mass of $\mathrm{NH}_{4} \mathrm{Cl}$ do I need to make 250 mL of a 0.75 M solution?
3. Balance the equation $\quad \mathrm{Al}+\mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+\mathrm{H}_{2}$ If 0.29 L of a 2.1 M solution of HCl is reacted completely, what would the molarity of AlCl_{3} be if the final volume is .75 L ?
4. Balance the equation $\quad \mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \quad \mathrm{KOH}+\quad \mathrm{H}_{2}$ If 3.6 g of K are dropped in water and reacted completely, what is the molarity of KOH if the final solution is 1.4 L ?
5. Continuing with the previous problem, what will the volume of H_{2} gas be if the temperature is $12^{\circ} \mathrm{C}$ and the pressure is 104 kPa ?
6. $\mathrm{NaHCO}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{NaCH}_{3} \mathrm{COO}$

If 3.2 g of NaHCO_{3} is added to 451 mL of a 1.2 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$, what volume of a CO_{2} is produced at 287 K and 123 kPa ?
(this includes limiting reactants, gas laws and molarity)

