\qquad
Hess's Law Problems

1. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-685.5 \mathrm{~kJ} \\
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{l})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-583.5 \mathrm{~kJ}
\end{array}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{l})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-583.5 \mathrm{~kJ}
$$

2. Find the enthalpy value, $\Delta \mathrm{H}$, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

$$
\begin{array}{ll}
\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-2439 \mathrm{~kJ} \\
4 \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=3438 \mathrm{~kJ}
\end{array}
$$

3. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) & \Delta \mathrm{H}=-94.5 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=71.2 \mathrm{~kJ} \\
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-283 \mathrm{~kJ}
\end{array}
$$

4. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{CH}_{4} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-37 \mathrm{~kJ} \\
\mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-46 \mathrm{~kJ} \\
\mathrm{CH}_{4} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-65 \mathrm{~kJ}
\end{array}
$$

5. Find the ΔH for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) & \Delta \mathrm{H}=-235.5 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-207 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=44 \mathrm{~kJ}
\end{array}
$$

6. Find the ΔH for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-115 \mathrm{~kJ}$
$2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-142.5 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-43.7 \mathrm{~kJ}$
