
Nuclear Winter

Large Scale Nuclear War

- ► The scariest part of large scale nuclear war is that no one on the planet could possibly escape the after effects.
- ► Even if you were outside of all blast regions, you would still be exposed to the **fallout**.
- ► Fallout is radioactive material spread around from a nuclear explosion.
- ▶ In a large scale nuclear war, enough radioactive material would be spread to cover the entire planet.

Nuclear Winter

- Even if you were safe from the fallout (somehow), the planet would enter a <u>nuclear winter</u>.
- ▶ This is the same idea as a comet hitting the planet and kicking up a huge dust cloud (the theory on what killed the dinosaurs).
- Instead of a comet, it would be several nuclear bombs hitting cities. They burn releasing ash and soot into the stratosphere that would takes decades to settle out.

What this would do

- ▶ It would block out sunlight from getting to the surface.
- The amount that would be blocked out would depend on the amount of soot in the atmosphere which depends on the number of bombs exploding.
- ► Even a small exchange of nuclear bombs would have a dramatic effect on the planetary climate.

Blocked out Sun

- Some light would still get through, but average temperatures would fall.
- ▶ Plants would begin to die.
- Crops would fail.
- ▶ Animals that eat those plants begin to die.
- ▶ Bodies would begin to pile up, increasing the amount of harmful decomposers.

-	

How bad?

- ➤ According to a report published in The Journal of Geophysical Research in 2007, a war using most of the world's arsenal would result in a global cooling of about 7-8° C.
- ► The last ice age 18,000 years ago was 5° C colder.
- ➤ After a decade the planet would still be 4° C, colder.
- ► A war using 50 Hiroshima sized bombs (the approximate arsenal of India and Pakistan) could cool the planet by 2-3° C for almost 10 years

Ozone Depletion

- The soot could chemically react with the ozone layer in the stratosphere.
- ▶ This could create "holes" in the ozone layer.
- ▶ Not only would you have to deal with lower global average temperatures, but the sunlight that does get through would come with dangerous levels of UV radiation.

Likely results

- ► This would probably result in a mass extinction of most species across the planet.
- ► Eventually temperatures would return to normal, and new species would come back.
- ► Given the adaptability and ingenuity of humans, **some** are likely to survive.
- ▶ I Don't Know With What Weapons World War III Will Be Fought, But World War IV Will be Fought With Sticks and Stones~ Albert Einstein

<u> </u>	
-	

Medical Uses of Radioactive Substances

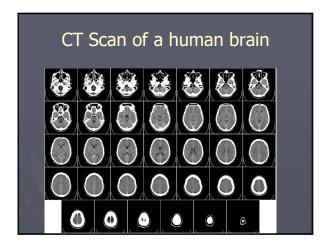
Nuclear Medicine

- ► We use radioactive substances in two different ways for medical purposes.
- ► Imaging- taking "pictures" of your internal anatomy.
- ► Therapy- to kill unwanted cells.

Imaging

- ➤ Your eyes can see a very small range of the electromagnetic spectrum (visible light).
- ► However, this energy still has an effect on objects.
- ► Certain materials will absorb the radiation and change colors.
- This occurs through an endothermic reaction "burning" the material.
- ▶ These materials are your radiation "film"

X Rays


- ▶ Wilhem Röntgen described the properties of X-rays in 1895.
- ► He called them "X" because they were an unknown.
- ▶ Different materials of different densities absorb X-rays differently.
- ▶ When X-rays hit a film they darken it.
- ▶ Dense materials like bone absorb the X-rays so they stay lighter.

CT Scan

- ► X Rays only give you a 2 D image with all objects superimposed on top of each other.
- ▶ A CT (computed tomography) or a CAT scan has the detector and source move so we can get a computer generated 3-D image of the object.

MRI

- ► Magnetic Resonance Imaging, or Nuclear Magnetic Resonance (NMR).
- ► When using the same principle on chemicals, it is called NMR.
- ► An MRI works the same way as a CT scan but uses nonionizing radiation.
- ► A machine can take multiple pictures from several different angles.
- Since the radiation is non ionizing several more pictures are taken than in a CT Scan. This procedure make take an hour where a CT scan could only be a few minutes

Radiopharmaceuticals

- ▶ Instead of keeping the source outside of the body and sending the radiation through a patient, sometimes radioactive substances are administered internally.
- ▶ The patient is then checked radiation.
- ▶ This can be used to make an image.

Tracers

- Sometimes a radioisotope is bonded to a protein so some substance the body processes.
- After the isotope inside, it allows doctors to see where it is accumulating in the body.
- ▶ Radioisotopes chemically bonded is called a **tracer**.

Therapy

- ▶ Radiation treatment is often used to treat cancer.
- ► Chemotherapy works on the same principle, but uses chemicals instead of radioactive substances.
- ► Cancer cells are rapidly dividing cells.
- ► These cells should be weaker than other cells since they are dividing so rapidly.

Radiation

- ▶ Radiation is administered to the affected area.
- ▶ Radiation breaks apart and kills all cells.
- ► Cancer cells should die more easily than healthy cells.
- The idea is to continue the treatment until all the cancer cells are dead, then try to nurse the patient back to health.

С	ommon i	sotor	oe:	s use	ed in nuc	lear medicine
	isotope	symbol	z	T1/2	decay	β
	Imaging:					
	fluorine-18	¹⁸ F		110 m	β^{\dagger}	0.664 (97%)
	gallium-67	⁶⁷ Ga	31	3.26 d	ec	
	krypton-81m	^{81m} Kr	36	13.1 s		>/•/\{_\
	rubidium-82	82Rb	37	1.27 m	$\beta^{^{+}}$	3.379 (95%)
		^{99m} Tc	43	6.01 h		
	indium-111	¹¹¹ In	49	2.80 d	ec	(,
	iodine-123	¹²³	53	13.3 h	ec	/
	xenon-133	¹³³ Xe	54	5.24 d	β	0.364 (99%)
	thallium-201	²⁰¹ TI	81	3.04 d	ec	·
	Therapy:					
	yttrium-90	⁹⁰ Y	39	2.67 d	β	2.280 (100%)
		¹³¹ I	53	8.02 d	β	0.807 (100%)
	Z = atomic number, the number of photons = principle photon en β = beta maximum energy in n R ² = 8 ² decore 8 = 8 decore 0	ergies in kilo-electron v nega-electron volts, M	volts, keV	(abundance/decay		

-	