

A problem

 \circ 2 SO_{2 (g)} +O_{2 (g)} \rightleftharpoons 2 SO_{3 (g)} \circ K = 4.34, for the above reaction. Calculate the concentration of SO₃ if the SO₂ = .28 M and O₂ = .43 M at equilibrium.

Answer $\begin{array}{l} \circ \mathsf{K} = & [SO_3]^2 \\ \circ & [SO_2]^2 [O_2] \\ \circ & 4.34 = [SO_3]^2 \\ \circ & [.28]^2 [.43] \\ \circ & [SO_3] = .38 \text{ M} \end{array}$

Reaction Quotient, Q

- The reaction quotient, Q, gives us a value of <u>current concentrations</u> of all chemicals before they complete reacting towards equilibrium.
- It is calculated the same way as K except you use <u>current concentrations</u>.
- Comparing the Q value to the K value allows you to determine which way the reaction will shift.

K and Q values

K and Q are calculated by products over reactants.

- Larger values mean higher products, smaller mean higher reactants.
- If **K** is larger than **Q**, it means that Q has a higher concentration of reactants so the reaction will shift to the **right**.
- If K is smaller than Q, it means that Q has a higher concentration of products so the reaction will shift to the left.
- If K equals Q you are at equilibrium, no shift

Easy way to remember

- Greater than, less than signs are an arrow!!!
- Put K first, then Q and determine which is larger.
- \circ K > Q, shift right
- K < Q, shift left
- \circ K = Q, No shift

Q problem • The K is .060 for the reaction: • $N_2 + 3 H_2 \rightleftharpoons 2 NH_3$ • Calculate Q and determine which way the reaction will shift				
		[N ₂] (M)	[H ₂] (M)	[NH ₃](M)
Case 1		1.0x10 ⁻⁵	2.0x10 ⁻³	1.0x10 ⁻³
Case 2		1.5x10 ⁻⁵	3.54x10 ⁻¹	2.0x10 ⁻⁴
Case 3		5.0	1.0x10 ⁻²	1.0x10 ⁻⁴

Answer

 $O_{k} Q = [NH_{3}]^{2}$ $O_{k} [N_{2}][H_{2}]^{3}$ $O_{k} Case 1, Q = 1.25 \times 10^{7}$ $O_{k} Case 2, Q = .060$ $O_{k} Case 2, Q = .060$ $O_{k} Case 3, Q = .002$ $O_{k} Case 3, Q = .002$ $O_{k} Case 3, Q = .002$

Solution Equilibrium

- All dissociations we have done are equilibriums.
- Before we simply stated something was soluble or insoluble.
- Actually everything dissolves to some extent, and some dissolved substance fall out of solution.
- Higher concentrations force more solute to fall out of solution.
- \circ So there is a maximum concentration of solute a solution can hold (saturation)

Solution equilibrium

- For Example:
- o Lead (II) Bromide
- \circ PbBr_{2 (s)} \geq Pb²⁺ (aq) + 2 Br⁻(aq) \circ What would the equilibrium expression look like?
- $K_{sp} = [Pb^{2+}][Br^{-}]^{2}$
- Equilibrium constants for dissociations are called **solubility products**, and are denoted by **K**_{sp}.

Cont. The K_{sp} value for PbBr₂ is 5.0 x 10⁻⁶. $PbBr_{2 (s)} \gtrsim Pb^{2+}_{(aq)} + 2 Br_{(aq)}$ Say the maximum moles of $PbBr_2$ that can dissolve is x moles per 1L. o Using the balanced equation, I will have x mole/L of Pb2+ and 2x mole/L of Bro So \circ 5.0 x 10⁻⁶ = x (2x)² \circ 5.0 x 10⁻⁶ = 4x³ o x=.011 M This is the solubility, or maximum amount of solute, PbBr₂, that will dissolve. \circ [Pb²⁺] = .011 M 2x = [Br⁻] = .022 M

This means

- A solution of PbBr₂ would be saturated with $[PbBr_{2}] = .011$ M
- o After I reach that level, no more will dissolve.
- o This is a very low concentration, so we say the is compound is insoluble.
- In the solution, the ion concentrations would be
- [Pb²⁺] = .011 M
- o [Br⁻]= .022 M

Problems

 \circ Calculate the solubility and saturation concentrations of ions in aluminum hydroxide K_{sp} = 5.0 x10 $^{-33}$, and Barium sulfate K_{sp} = 1.4 x10 $^{-14}$

Answer

 \circ Al(OH)₃ \succeq Al³⁺ (aq) + 3 OH⁻(aq) \circ K_{sp} = [Al³⁺][OH⁻]³ \circ 5.0x10⁻³³ = x (3x)³ \circ x = 3.7x10⁻⁹ M (solubility)

○ [AI³⁺] = 3.7x10⁻⁹ M
○ 3x = [OH⁻] = 1.1 x10⁻⁸ M

Answer

○ BaSO₄ \implies Ba²⁺ (aq) + SO₄²⁻(aq) ○ K_{sp} = [Ba²⁺][SO₄²⁻] ○ 1.4×10⁻¹⁴ = x (x) ○ x = 1.2 ×10⁻⁷ M (solubility) ○ [Ba²⁺]= 1.2 ×10⁻⁷ M

o [SO₄²⁻] = 1.2 x10⁻⁷ M