
\qquad

\qquad
\qquad

Answer

- $\mathrm{K}=\left[\mathrm{SO}_{3}\right]^{2}$
- $\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
- $4.34=\left[\mathrm{SO}_{3}\right]^{2}$
\qquad
\qquad
\qquad
$-\quad[.28]^{2}[.43]$
$\circ\left[\mathrm{SO}_{3}\right]=.38 \mathrm{M}$

Reaction Quotient, Q

- The reaction quotient, Q, gives us a value of current concentrations of all chemicals before they complete reacting towards equilibrium.
- It is calculated the same way as K except you use current concentrations.
- Comparing the Q value to the K value allows you to determine which way the reaction will shift.

K and Q values

and Q are calculated by products over eactants.
Larger values mean higher products, smaller \qquad mean higher reactants.
o If \mathbf{K} is larger than \mathbf{Q}, it means that Q has a \qquad
higher concentration of reactants so the reaction will shift to the right.
If \mathbf{K} is smaller than \mathbf{Q}, it means that Q has a higher concentration of products so the reaction will shift to the left.
\bigcirc If \mathbf{K} equals \mathbf{Q} you are at equilibrium, no shift

Easy way to remember

- Greater than, less than signs are an arrow!!!
- Put K first, then Q and determine which is larger.
- $K>Q$, shift right
$\circ K<Q$, shift left
$\circ K=Q$, No shift

	Q problem		
	o The K is . 060 for the reaction:$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$Calculate Q and determine which way the reaction will shift		
	[N_{2}] (M)	[H_{2}] (M)	$\left[\mathrm{NH}_{3}\right](\mathrm{M})$
Case 1	1.0×10^{-5}	2.0×10^{-3}	1.0×10^{-3}
Case 2	1.5×10^{-5}	3.54×10^{-1}	2.0×10^{-4}
Case 3	5.0	1.0×10^{-2}	1.0×10^{-4}

\qquad
\qquad

- $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ \qquad
ander $\left[\mathrm{N}_{2}\right](\mathrm{M}) \quad\left[\mathrm{H}_{2}\right](\mathrm{M}) \quad\left[\mathrm{NH}_{3}\right](\mathrm{M})$ $.0 \times 10^{-5} \quad 2.0 \times 10^{-3}$ 1.0×10^{-3}

Solution equilibrium

- For Example:
- Lead (II) Bromide
$-\mathrm{PbBr}_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Br}_{(\mathrm{aq})}$
- What would the equilibrium expression look like?
- $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Br}^{-}\right]^{2}$
- Equilibrium constants for dissociations are called solubility products, and are denoted by $\mathbf{K}_{\mathbf{s p}}$.

Cont.
The $\mathrm{K}_{\text {sp }}$ value for PbBr_{2} is 5.0×10^{-6}.
$\mathrm{PbBr}_{\text {(s) }} \rightleftharpoons \mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Br}_{(\mathrm{aq})}^{-}$
Say the maximum moles of PbBr_{2} that can dissolve is \times moles per 1 L .

- Using the balanced equation, I will have x mole/L of Pb^{2+} and $2 x$ mole/L of Br^{-}
- So
$5.0 \times 10^{-6}=x(2 x)^{2}$
$5.0 \times 10^{-6}=4 x^{3}$
$\circ \mathrm{x}=.011 \mathrm{M}$ This is the solubility, or maximum amount of solute, PbBr_{2}, that will dissolve.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\circ\left[\mathrm{Pb}^{2+}\right]=.011 \mathrm{M} \quad 2 \mathrm{x}=[\mathrm{Br}]=.022 \mathrm{M}$

This means

- A solution of PbBr_{2} would be saturated
\qquad with $\left[\mathrm{PbBr}_{2}\right]=.011 \mathrm{M}$
- After I reach that level, no more will \qquad dissolve.
- This is a very low concentration, so we \qquad say the is compound is insoluble.
- In the solution, the ion concentrations would be
$-\left[\mathrm{Pb}^{2+}\right]=.011 \mathrm{M}$
$\circ\left[\mathrm{Br}^{-}\right]=.022 \mathrm{M}$

Problems

- Calculate the solubility and saturation \qquad concentrations of ions in aluminum hydroxide $\mathrm{K}_{\mathrm{sp}}=5.0 \times 10^{-33}$, and Barium \qquad sulfate $\mathrm{K}_{\mathrm{sp}}=1.4 \times 10^{-14}$

Answer
$-\mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

- $\mathrm{K}_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
- $5.0 \times 10^{-33}=x(3 x)^{3}$
- $x=3.7 \times 10^{-9} \mathrm{M}$ (solubility)
\qquad
\qquad
\qquad
- $\left[\mathrm{Al}^{3+}\right]=3.7 \times 10^{-9} \mathrm{M}$
- $3 x=\left[\mathrm{OH}^{-}\right]=1.1 \times 10^{-8} \mathrm{M}$

Answer
$-\mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$

- $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]$
- $1.4 \times 10^{-14}=x(x)$
- $x=1.2 \times 10^{-7} \mathrm{M}$ (solubility)
$-\left[\mathrm{Ba}^{2+}\right]=1.2 \times 10^{-7} \mathrm{M}$ \qquad
$\circ\left[\mathrm{SO}_{4}{ }^{2-}\right]=1.2 \times 10^{-7} \mathrm{M}$

