Gamma rays, Fission ~bombs and nuclear power

Gamma radiation

- In gamma radiation no particle is released, just a "packet" of energy.
- Photon- "packet" of energy.
- When an atom has too much energy, it is <u>excited</u>, it's electrons are in higher energy levels
- When they fall back to ground state, they release energy as small little bits.
- This energy travels as an electromagnetic wave.

Nuclear fission

- ~the separating of a nucleus of an atom.
- This is the process used by nuclear power stations (when it is kept under control).
- It is also the process of an atom bomb (when it is allowed to run uncontrolled).

Manhattan Project

- ~construction of the atom bomb, 1942-45
- Several scientists associated with this project were Jewish who fled Nazi Germany. Including Fermi and Einstein.
- After Germany fell, several tried to stop the bombs from ever being used.
- It resulted in the bombing of Hiroshima on Aug 6, 1945 and Nagasaki on Aug 9, 1945.

Pre-Manhattan Project

- Several scientists fled Nazi Germany, but still had some contact with their old colleagues.
- Leo Sziliard and Enrico Fermi built and patented the first nuclear reactor in the United States under the football stadium in the squash courts at the University of Chicago.
- Their reactor was far too small to be useful, but the men understood the implications of their discovery.
- A "super bomb" could be built with this idea and they knew Germany was working on it.

Einstein

- Szilard wrote a letter to Einstein, also a Jewish refugee, about his work and the implications.
- Einstein signed a letter written by Szilard to president Franklin Roosevelt.
- Einstein would later say it was his greatest regret in life.

What is needed

- You need the rare isotope Uranium-235,
- or the artificially created Plutonium-239.
- The U-235 is bombarded with neutrons, the nucleus absorbs one neutron making the highly unstable U-236.
- The nucleus splits in two and releases 3 neutrons.
- This releases a lot more energy at once than regular decay (α or β).

Difficulties

- The hardest part of getting this reaction is having enough fissionable U-235.
- Uranium naturally occurs with about 99.8% U-238
- U-238 will act the same chemically and physically to U-235, but it is not fissionable.
- Power plants need Enriched Uranium which is about 3-5% U-235
- Bombs need Highly Enriched Uranium (HEU) around 90% U-235

	_	

Nuclear Fission Reaction

$$\begin{array}{c}
235 \\
92
\end{array} U +_{0}^{1} n \longrightarrow \begin{bmatrix} 236 \\ 92 \end{bmatrix} U \xrightarrow{\text{fission}} \begin{array}{c} 93 \\ 36 \\ \text{Kr} + \begin{array}{c} 140 \\ 56 \end{array} \text{Ba} \\
+3 \quad {_{0}^{1}} n \\
+\text{energy}
\end{array}$$

Chain Reaction

- The three neutrons released from the first fission are absorbed by another 3 U-235 atoms.
- These atoms each undergo fission and also release 3 neutrons each (9 total).
- These hit 9 more U-235 and they undergo fission (releasing 27 neutrons).
- <u>Chain Reaction</u>- self sustaining nuclear reaction where one fission causes the fission of others.
- (video)

Chain Reaction Diagram Today Today

Critical mass

- ~the smallest amount of fissionable material necessary to start a chain reaction.
- The fission of 1 g of U-235 releases as much energy as combusting 2700 kg of coal.
- The bomb dropped on Hiroshima, "Little Boy" used U-235. The bomb dropped on Nagasaki, "Fat Man", used Pu-239.

Bombs

- Bombs are rated by what an equivalent mass of TNT would do.
- Little Boy was a 15 kiloton bomb, Fat Man was a 21 kiloton bomb.
- Large atom bombs (fission bombs) can release energy equivalent about 500 kilotons of TNT.
- Hydrogen bombs (Fusion bombs) use fission bombs as their starting device.
- Fusion bombs can release around the same amount of energy as 50 megatons of TNT (100 atom bombs).

"gun" design of Little Boy Conventional explosive Gun barrel Hollow uranium Cylinder target

