

\quad| Radiodating |
| :--- |
| - A method of determining the age of |
| materials. |

- Radio-dating works by looking for some
radioactive isotope present in a certain
material.
- All radioactive elements decay at a known
rate, the half life.
- If we can make an accurate assumption
about how much radioactive isotope was
present at some past date, we can
determine how long it took for the isotope
to decay to present levels.

Carbon dating

- One method is carbon-14 dating or C14 dating.
- This method only can be used on things that were once alive.
- Also this method is only used relatively recent materials on a geologic time scale. It can't be accurately used on anything more than 60,000 years old.
- It is good for the span of human existence, not for dinosaurs.

C-14

- C-14 is an isotope of carbon.
- Until it decays it will act exactly like Carbon-12 (nonradioactive carbon), it will make all the same compounds, for all the same bonds.
- Except, over time Carbon-14 will decay becoming Nitrogen-14

How carbon dating works

- Radiation on this planet causes radioactive isotopes to form.
- A known percentage of the carbon
dioxide in the air contains the radioactive C-14 isotope.
- This carbon dioxide is used to "build"
all living things (plants use it for
food, animals eat the plants etc.)

Finding an age

- The amount of C-14 in an object can be measured.
- This amount is compared to the amount assumed to be there when it died.
- You count the half lives to determine its age.

Radiodating

- Radiodating always require you to determine the amount of radioactive isotopes present in the past and compare it to what is present today.
- C-14 works because the amount of C14 in living things hasn't changed over time.
- Other types today compare the amount of daughter isotope present to the amount of radioactive isotope to determine how old it is

Fossils

Most older things being dated are fossils.
REMEMBER FOSSILS ARE NOT BONES!!
An item, like a bone, is left is soft
sediment. That sediment hardens into a rock. The bone itself decays away turning back into carbon dioxide.
Leaving an imprint in the rock. Another rock forms in the "mold" left and now you have a rock in the shape of that bone. It doesn't have to be a bone, it can be a footprint, shell, really anything that could leave an imprint.

Potassium-40 dating

- Fossils, and any other rock can also be dated if they have other certain isotopes.
- K-40 decays into Ar-40.
- When a rock is formed we can
assume all gases would escape, so all argon in a rock should be the product of $\mathrm{K}-40$ decay.
- measure the K-40 and compare it to the Ar-40 and you can determine its age.

Uranium-238 dating

- U-238 decays into $\mathrm{Pb}-206$ which is extremely rare.
- If you have a rock with U-238 and Pb206 present, you can assume the $\mathrm{Pb}-$ 206 came from the decay of U-238.
- Scientists have come up with the 4.6 billion year age of the planet using these methods.

Other methods

- There is a whole list of other isotopes that can be used.
- Samarium-neodymium
- Rubidium-strontium
- Uranium-thorium
- Chlorine-36

Calculations

- If you measure 15 g of C-14 and you assume you started with 60 g , then the object is..
- 11,430 years old
$60 \mathrm{~g} \rightarrow 30 \mathrm{~g} \rightarrow 15 \mathrm{~g}$ (2 half lives)
- 5715 years $\times 2=11,430$ years

Math

- Percentage left is current mass/initial mass $\times 100 \quad \%=m_{f} / m_{i} \times 100$
- Multiply the number of half lives by the value of one half life to get an age.
- The equation is difficult to use, so instead we will read it off a graph.
- Here is equation $m_{f} / m_{i}=1 / 2^{h l}$
*hl is the number of half lives passed.
$-\ln \left(m_{f}\right)-\ln \left(m_{i}\right)=-\ln (2) t / t_{1 / 2}$
- $\ln \left(m_{f} / m_{i}\right)=-\ln (2) t / t_{1 / 2}$
- $t_{1 / 2}$ is the accepted value of 1 half life

Problems

- If you have 32% of a material left, how many half lives have passed?
- If you have 17% of Ra-223 left, how old is it?

Problems

- If you have 32% of a material left, how many half lives have passed?
- 1.64 half lives
- If you have 17% of Ra-223 left, how old is it?
- 2.55 half lives $\times 11$ days $=$
- 28 days

Problems

- If original sample had 78 g of Pu241, and you now have 49 g left; how old is the sample?
- A sample of Radon-222 is 9.4 days old. There are .27 g present, how much was originally present?

