Balancing Redox reactions in an acid or a base

Redox reactions in acidic solutions

- □ I will tell you if it is in an acidic solution.
- □ These have special rules.
- □ Separate the reaction into half reactions.
- □ Balance all elements except hydrogen and oxygen.
- □ Balance oxygen by adding H₂O (which is always prevalent in an acidic solution)
- □ Balance hydrogen by adding H⁺.
- ☐ Then balance the charge by adding electrons to whichever side is more positive.
- □ Recombine your two half equations.

Example

- □ In an acidic solution
- \Box $\operatorname{Cr}_2\operatorname{O}_7{}^{2-}+\operatorname{Cl}^-\to\operatorname{Cr}^{3+}+\operatorname{Cl}_2$
- □ Half reactions
- $\Box \operatorname{Cr_2O_7}{}^{2\text{-}} \to \operatorname{Cr}^{3+}$
- \Box Cl⁻ \rightarrow Cl₂

Here we go

- \Box $Cr_2O_7^{2-} \rightarrow 2 Cr^{3+}$
- $\Box \operatorname{Cr_2O_7}{}^{2\text{-}} \to 2\operatorname{Cr}^{3\text{+}} + 7\operatorname{H_2O}$
- \Box $Cr_2O_7^{2-} + 14 H^+ \rightarrow 2 Cr^{3+} + 7 H_2O$
- \Box Cr₂O₇ ²⁻ + 14 H⁺+ 6 e⁻ \rightarrow 2 Cr³⁺ + 7 H₂O

Other side

- \Box Cl⁻ \rightarrow Cl₂
- \square 2 Cl⁻ \rightarrow Cl₂
- \square 2 Cl⁻ \rightarrow Cl₂ + 2 e⁻
- ☐ I have to equal 6 e⁻ so multiply by 3

Combine my half reactions

- $\hfill\Box$ $\mathrm{Cr_2O_7}$ $^{2\text{-}}$ + 14 H^++ 6 e^- \rightarrow 2 $\mathrm{Cr}^{3\text{+}}$ + 7 $\mathrm{H_2O}$
- □ And you get
- $\hfill\Box$ Cr₂O₇ ²⁻ +14 H⁺+ 6 Cl⁻ \rightarrow 2 Cr³⁺ + 3 Cl₂ + 7 H₂O
- □ The electrons cancel out.

Balance in an acidic solution

 $\square NO_2 + ClO_3 \rightarrow NO_3 + Cl_2$

Balance in an acidic solution

- $\square NO_2 + ClO_3 \rightarrow NO_3 + Cl_2$
- □ Half reactions
- \square NO₂ \rightarrow NO₃
- \square $ClO_3 \rightarrow Cl_2$

Nitrate side

- \square NO₂ \rightarrow NO₃
- \square NO₂ + H₂O \rightarrow NO₃
- $\square NO_2 + H_2O \rightarrow 2 H^+ + NO_3$
- □ $NO_2 + H_2O \rightarrow 2 H^+ + NO_3^- + 1 e^-$

Chlorate

- \square $ClO_3^- \rightarrow Cl_2$
- \square 2 ClO₃⁻ \rightarrow Cl₂
- \square 2 ClO₃⁻ \rightarrow Cl₂ + 6 H₂O
- □ $2 \text{ ClO}_3^- + 12 \text{ H}^+ \rightarrow \text{Cl}_2 + 6 \text{ H}_2\text{O}$
- □ $2 \text{ ClO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- \rightarrow \text{Cl}_2 + 6 \text{ H}_2\text{O}$
- ☐ You will have 10 x the first reaction
- □ $10 \text{ NO}_2 + 10 \text{ H}_2\text{O} \rightarrow 20 \text{ H}^+ + 10 \text{ NO}_3^- + 10 \text{ e}^-$

Put them together

- $\overline{2 \text{ ClO}_3^- + 12 \text{ H}^+ + 10 \text{ NO}_2 + 10 \text{ H}_2\text{O}}$
- \rightarrow Cl₂ + 6 H₂O + 20 H⁺ +10 NO₃⁻
- □ Notice the H⁺ and the water can also cancel out
- $2 \text{ ClO}_3^- + 10 \text{ NO}_2 + 4 \text{ H}_2\text{O} \rightarrow \text{Cl}_2 + 8 \text{ H}^+ + 10 \text{ NO}_3^-$

Example

- □ In an acidic solution
- \square MnO₄-+ H₂O₂ \rightarrow Mn²⁺ + O₂

Example

- □ In an acidic solution
- \square MnO₄⁻ + H₂O₂ \rightarrow Mn²⁺ + O₂
- □ Half reactions
- \square MnO₄ $^{-}$ \rightarrow Mn²⁺
- $\ \ \square \ \ H_2O_2 \to O_2$

Top Equation

- \square MnO₄ $^{-} \rightarrow$ Mn²⁺
- $\square MnO_4 \xrightarrow{\cdot} Mn^{2+} + 4 H_2O$
- $\square \ \mathrm{MnO_4^-} + 8 \ \mathrm{H^+} {\longrightarrow} \ \mathrm{Mn^{2+}} + 4 \ \mathrm{H_2O}$
- \square MnO₄-+8 H++5 e- \longrightarrow Mn²⁺+4 H₂O

Bottom Equation

- $\Box \ \, H_2O_2 \rightarrow O_2$
- $\ \ \square \ \ H_2O_2 \rightarrow O_2 + 2 \ H^+$
- \Box H₂O₂ \rightarrow O₂ + 2 H⁺ + 2 e⁻
- □ I need to equal 5 e⁻ so...
- □ That won't work...
- □ $2MnO_4^- + 16 H^+ + 10 e^- \rightarrow 2 Mn^{2+} + 8 H_2O$
- \Box 5 H₂O₂ \rightarrow 5 O₂ + 10 H⁺ + 10 e⁻

Add them together

- \square 2MnO₄⁻+ 16 H⁺+ 10 e⁻ \rightarrow 2 Mn²⁺ + 8 H₂O
- \Box 5 H₂O₂ \rightarrow 5 O₂ + 10 H⁺ + 10 e⁻
- □ And you get
- \square 2 MnO₄-+ 6 H⁺+ 5 H₂O₂

$$\rightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2\text{O}$$

□ Notice the H⁺ canceled out as well.

Balancing Redox Equations in a basic solution

- □ Follow all rules for an acidic solution.
- □ After you have completed the acidic reaction add OH⁻ to each side to neutralize any H⁺.
- \square Combine OH⁻ and H⁺ to make H₂O.
- ☐ Cancel out any extra waters from both sides of the equation.

Example

- □ We will use the same equation as before
- □ In a basic solution
- $\square \ MnO_4^- + H_2O_2 \rightarrow Mn^{2+} + O_2$
- □ Balanced in an acidic solution
- \square 2 MnO₄-+ 6 H⁺+ 5 H₂O₂

$$\rightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2\text{O}$$

Basic solution

- □ Since this is a basic solution we can't have excess H⁺.
- $\hfill \Box$ We will add $OH^{\text{-}}$ to each side to neutralize all $H^{\text{+}}$
- \square 2 MnO₄⁻ + 6 H⁺+ 5 H₂O₂ + 6OH⁻

$$\rightarrow$$
 2 Mn²⁺ + 5 O₂ + 8 H₂O + 6OH

 \square We added 6 OH⁻ because there were 6H⁺

Cont.

- $\Box \ \ H^+ + OH^- \rightarrow \ H_2O$
- □ Combine the hydroxide and hydrogen on the reactant side to make water
- \square 2 MnO₄⁻ + 6 H₂O + 5 H₂O₂

$$\rightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2\text{O} + 6\text{OH}^-$$

- □ Cancel out waters on both sides
- \square 2 MnO₄⁻ + 5 H₂O₂

$$\rightarrow$$
 2 Mn²⁺ + 5 O₂ + 2 H₂O + 6OH⁻

Another example

- □ In a basic solution
- $\square MnO_4^- + SO_3^2 MnO_4^{2-} + SO_4^{2-}$

Another example

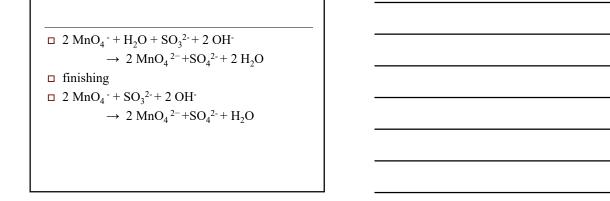
- □ In a basic solution
- \square MnO₄ + SO₃² \rightarrow MnO₄ ²⁻ + SO₄²⁻
- □ Half reactions
- \square MnO₄ $^- \rightarrow$ MnO₄ $^{2-}$
- \square SO₃²- \rightarrow SO₄²-

Half reactions

- $\square \ \mathrm{MnO_4}^- \! \to \overline{\ \mathrm{MnO_4}^{2^-}}$
- \square MnO₄ $^{-}$ + e $^{-}$ \rightarrow MnO₄ $^{2-}$
- \square SO₃²- \rightarrow SO₄²-
- $\square H_2O + SO_3^{2-} \longrightarrow SO_4^{2-}$
- \square H₂O + SO₃²- \rightarrow SO₄²- + 2 H⁺
- \Box H₂O + SO₃²⁻ \longrightarrow SO₄²⁻ + 2 H⁺ +2e⁻
- □ Double the top reaction

$$\square$$
 2 MnO₄ $^{-}$ + 2 e $^{-}$ \rightarrow 2 MnO₄ $^{2-}$

$$\Box$$
 H₂O + SO₃²⁻ \longrightarrow SO₄²⁻ + 2 H⁺ +2e⁻


- □ Combine them
- \square 2 MnO₄ + H₂O + SO₃²-

$$\rightarrow 2 \text{ MnO}_4^{2-} + \text{SO}_4^{2-} + 2 \text{ H}^+$$

□ Add OH-

$$\square$$
 2 MnO₄ - + H₂O + SO₃²⁻ + 2 OH

$$\rightarrow 2 \text{ MnO}_4^{2-} + \text{SO}_4^{2-} + 2 \text{ H}^+ + 2 \text{ OH}^-$$

