Balancing Redox reactions in an acid or a base # Redox reactions in acidic solutions - □ I will tell you if it is in an acidic solution. - □ These have special rules. - □ Separate the reaction into half reactions. - □ Balance all elements except hydrogen and oxygen. - □ Balance oxygen by adding H₂O (which is always prevalent in an acidic solution) - □ Balance hydrogen by adding H⁺. - ☐ Then balance the charge by adding electrons to whichever side is more positive. - □ Recombine your two half equations. # Example - □ In an acidic solution - \Box $\operatorname{Cr}_2\operatorname{O}_7{}^{2-}+\operatorname{Cl}^-\to\operatorname{Cr}^{3+}+\operatorname{Cl}_2$ - □ Half reactions - $\Box \operatorname{Cr_2O_7}{}^{2\text{-}} \to \operatorname{Cr}^{3+}$ - \Box Cl⁻ \rightarrow Cl₂ #### Here we go - \Box $Cr_2O_7^{2-} \rightarrow 2 Cr^{3+}$ - $\Box \operatorname{Cr_2O_7}{}^{2\text{-}} \to 2\operatorname{Cr}^{3\text{+}} + 7\operatorname{H_2O}$ - \Box $Cr_2O_7^{2-} + 14 H^+ \rightarrow 2 Cr^{3+} + 7 H_2O$ - \Box Cr₂O₇ ²⁻ + 14 H⁺+ 6 e⁻ \rightarrow 2 Cr³⁺ + 7 H₂O #### Other side - \Box Cl⁻ \rightarrow Cl₂ - \square 2 Cl⁻ \rightarrow Cl₂ - \square 2 Cl⁻ \rightarrow Cl₂ + 2 e⁻ - ☐ I have to equal 6 e⁻ so multiply by 3 # Combine my half reactions - $\hfill\Box$ $\mathrm{Cr_2O_7}$ $^{2\text{-}}$ + 14 H^++ 6 e^- \rightarrow 2 $\mathrm{Cr}^{3\text{+}}$ + 7 $\mathrm{H_2O}$ - □ And you get - $\hfill\Box$ Cr₂O₇ ²⁻ +14 H⁺+ 6 Cl⁻ \rightarrow 2 Cr³⁺ + 3 Cl₂ + 7 H₂O - □ The electrons cancel out. ## Balance in an acidic solution $\square NO_2 + ClO_3 \rightarrow NO_3 + Cl_2$ # Balance in an acidic solution - $\square NO_2 + ClO_3 \rightarrow NO_3 + Cl_2$ - □ Half reactions - \square NO₂ \rightarrow NO₃ - \square $ClO_3 \rightarrow Cl_2$ # Nitrate side - \square NO₂ \rightarrow NO₃ - \square NO₂ + H₂O \rightarrow NO₃ - $\square NO_2 + H_2O \rightarrow 2 H^+ + NO_3$ - □ $NO_2 + H_2O \rightarrow 2 H^+ + NO_3^- + 1 e^-$ #### Chlorate - \square $ClO_3^- \rightarrow Cl_2$ - \square 2 ClO₃⁻ \rightarrow Cl₂ - \square 2 ClO₃⁻ \rightarrow Cl₂ + 6 H₂O - □ $2 \text{ ClO}_3^- + 12 \text{ H}^+ \rightarrow \text{Cl}_2 + 6 \text{ H}_2\text{O}$ - □ $2 \text{ ClO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- \rightarrow \text{Cl}_2 + 6 \text{ H}_2\text{O}$ - ☐ You will have 10 x the first reaction - □ $10 \text{ NO}_2 + 10 \text{ H}_2\text{O} \rightarrow 20 \text{ H}^+ + 10 \text{ NO}_3^- + 10 \text{ e}^-$ #### Put them together - $\overline{2 \text{ ClO}_3^- + 12 \text{ H}^+ + 10 \text{ NO}_2 + 10 \text{ H}_2\text{O}}$ - \rightarrow Cl₂ + 6 H₂O + 20 H⁺ +10 NO₃⁻ - □ Notice the H⁺ and the water can also cancel out - $2 \text{ ClO}_3^- + 10 \text{ NO}_2 + 4 \text{ H}_2\text{O} \rightarrow \text{Cl}_2 + 8 \text{ H}^+ + 10 \text{ NO}_3^-$ ### Example - □ In an acidic solution - \square MnO₄-+ H₂O₂ \rightarrow Mn²⁺ + O₂ #### Example - □ In an acidic solution - \square MnO₄⁻ + H₂O₂ \rightarrow Mn²⁺ + O₂ - □ Half reactions - \square MnO₄ $^{-}$ \rightarrow Mn²⁺ - $\ \ \square \ \ H_2O_2 \to O_2$ # **Top Equation** - \square MnO₄ $^{-} \rightarrow$ Mn²⁺ - $\square MnO_4 \xrightarrow{\cdot} Mn^{2+} + 4 H_2O$ - $\square \ \mathrm{MnO_4^-} + 8 \ \mathrm{H^+} {\longrightarrow} \ \mathrm{Mn^{2+}} + 4 \ \mathrm{H_2O}$ - \square MnO₄-+8 H++5 e- \longrightarrow Mn²⁺+4 H₂O # **Bottom Equation** - $\Box \ \, H_2O_2 \rightarrow O_2$ - $\ \ \square \ \ H_2O_2 \rightarrow O_2 + 2 \ H^+$ - \Box H₂O₂ \rightarrow O₂ + 2 H⁺ + 2 e⁻ - □ I need to equal 5 e⁻ so... - □ That won't work... - □ $2MnO_4^- + 16 H^+ + 10 e^- \rightarrow 2 Mn^{2+} + 8 H_2O$ - \Box 5 H₂O₂ \rightarrow 5 O₂ + 10 H⁺ + 10 e⁻ #### Add them together - \square 2MnO₄⁻+ 16 H⁺+ 10 e⁻ \rightarrow 2 Mn²⁺ + 8 H₂O - \Box 5 H₂O₂ \rightarrow 5 O₂ + 10 H⁺ + 10 e⁻ - □ And you get - \square 2 MnO₄-+ 6 H⁺+ 5 H₂O₂ $$\rightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2\text{O}$$ □ Notice the H⁺ canceled out as well. # Balancing Redox Equations in a basic solution - □ Follow all rules for an acidic solution. - □ After you have completed the acidic reaction add OH⁻ to each side to neutralize any H⁺. - \square Combine OH⁻ and H⁺ to make H₂O. - ☐ Cancel out any extra waters from both sides of the equation. # Example - □ We will use the same equation as before - □ In a basic solution - $\square \ MnO_4^- + H_2O_2 \rightarrow Mn^{2+} + O_2$ - □ Balanced in an acidic solution - \square 2 MnO₄-+ 6 H⁺+ 5 H₂O₂ $$\rightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2\text{O}$$ #### Basic solution - □ Since this is a basic solution we can't have excess H⁺. - $\hfill \Box$ We will add $OH^{\text{-}}$ to each side to neutralize all $H^{\text{+}}$ - \square 2 MnO₄⁻ + 6 H⁺+ 5 H₂O₂ + 6OH⁻ $$\rightarrow$$ 2 Mn²⁺ + 5 O₂ + 8 H₂O + 6OH \square We added 6 OH⁻ because there were 6H⁺ #### Cont. - $\Box \ \ H^+ + OH^- \rightarrow \ H_2O$ - □ Combine the hydroxide and hydrogen on the reactant side to make water - \square 2 MnO₄⁻ + 6 H₂O + 5 H₂O₂ $$\rightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2\text{O} + 6\text{OH}^-$$ - □ Cancel out waters on both sides - \square 2 MnO₄⁻ + 5 H₂O₂ $$\rightarrow$$ 2 Mn²⁺ + 5 O₂ + 2 H₂O + 6OH⁻ #### Another example - □ In a basic solution - $\square MnO_4^- + SO_3^2 MnO_4^{2-} + SO_4^{2-}$ #### Another example - □ In a basic solution - \square MnO₄ + SO₃² \rightarrow MnO₄ ²⁻ + SO₄²⁻ - □ Half reactions - \square MnO₄ $^- \rightarrow$ MnO₄ $^{2-}$ - \square SO₃²- \rightarrow SO₄²- #### Half reactions - $\square \ \mathrm{MnO_4}^- \! \to \overline{\ \mathrm{MnO_4}^{2^-}}$ - \square MnO₄ $^{-}$ + e $^{-}$ \rightarrow MnO₄ $^{2-}$ - \square SO₃²- \rightarrow SO₄²- - $\square H_2O + SO_3^{2-} \longrightarrow SO_4^{2-}$ - \square H₂O + SO₃²- \rightarrow SO₄²- + 2 H⁺ - \Box H₂O + SO₃²⁻ \longrightarrow SO₄²⁻ + 2 H⁺ +2e⁻ - □ Double the top reaction $$\square$$ 2 MnO₄ $^{-}$ + 2 e $^{-}$ \rightarrow 2 MnO₄ $^{2-}$ $$\Box$$ H₂O + SO₃²⁻ \longrightarrow SO₄²⁻ + 2 H⁺ +2e⁻ - □ Combine them - \square 2 MnO₄ + H₂O + SO₃²- $$\rightarrow 2 \text{ MnO}_4^{2-} + \text{SO}_4^{2-} + 2 \text{ H}^+$$ □ Add OH- $$\square$$ 2 MnO₄ - + H₂O + SO₃²⁻ + 2 OH $$\rightarrow 2 \text{ MnO}_4^{2-} + \text{SO}_4^{2-} + 2 \text{ H}^+ + 2 \text{ OH}^-$$