RedOx

Chapter 18

Oxidation- Reduction Reactions

- Redox or oxidation-reduction reactions are reactions that involve a transfer of electrons.
- Oxidation is the loss of electrons.
- Reduction is the gain of electrons.
- (think of the charge, OIL RIG)
- So in the reaction $\bullet 4 \text{ K} + \text{O}_2 \rightarrow 4 \text{ K}^+ + 2 \text{ O}^{2-1}$
- Potassium get oxidized, oxygen get reduced

Of course...

- We would normally write this expression
- 4 K + $O_2 \rightarrow 4 K^+ + 2 O^2$
- as...
- 4 K + $O_2 \rightarrow 2 K_2O$
- It doesn't change anything
- Potassium still gets oxidized, oxygen still gets reduced.

Oxidation States

- CH_4 +2 $O_2 \rightarrow CO_2 + 2 H_2O$
- The above reaction also involves a transfer of electrons, so it is a redox reaction.
- To see this we need to assign oxidation numbers to each atom present.
- Oxidation states (numbers)- hypothetical charge an atom would have if all bonds were ionic.
- It is used as a method to keep track of electrons in oxidation reduction reactions

Rules for assigning Oxidation States

- 1. The oxidation state of an uncombined atom is 0. 2. The oxidation state of a monoatomic ion is the
- same as its charge. 3. The sum of the oxidation states of a neutral
- compound must be 0. 4. The sum of the oxidation states of a polyatomic
- ion must equal its charge.
- 5. In binary compounds, the element with the greater electronegativity is assigned a negative oxidation state equal to its charge as an ion.

Special Elements

- 6. Diatomic elements are assigned an oxidation state of zero if they are not bonded to anything else.
- 7. Alkali metals when in a compound are +1
- 8. Alkaline Earth metals are almost always +2
- Halogens are normally -1 unless bonded to a more electronegative halogen or oxygen 10.Except for the above rules, Oxygen is assigned an oxidation state of -2 unless it in a compound
- containing peroxide (O_2^{2-}), then it gets a -1.
- 1. Hydrogen gets a charge of +1when bonded to nonmetals, it if is bonded to a metal it is -1.

Determining Oxidation States	
• C • C00	SO ₄ ²⁻ S +6
• F ₂ • F 0	• 0 -2
■ AIF ₃ ■ AI + 3	CaCl ₂ Ca +2
F -1	CI -1
	NH ₃ N -3
HO H+1	H +1
0-1	NaH Na + 1
- К РО - К+1	■ H - 1
P +5	CaSiO ₃ Ca +2
O -2	• Si +4
NaClO, Na +1	• O -2
- Hubio4 - Cl +7	
O -2	

Using oxidation states

In the reaction...

- 2 Na +2 $H_2O \rightarrow 2 NaOH + H_2$
- **0** +1 -2 +1 -2 +1 0
- Note the changes
- Sodium went from 0 to 1
- 2 of the hydrogen atoms went from +1 to 0 (the other two were unchanged)

So...

- Sodium must have lost 2 electrons
- 2 Na \rightarrow 2Na⁺ + 2 e⁻
- And Hydrogen gained two electrons
- 2 $H_2O + 2 e^- \rightarrow 2 OH^- + H_2$
- Sodium is oxidized, hydrogen is reduced in this reaction
- Oxidation is an increase in oxidation state
- Reduction is a decrease in oxidation state

In the reaction from earlier

- $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$ **-**4+1 0 +4-2 +1-2
- Carbon went from -4 to +4, it was oxidized Oxygen went from 0 to -2 it was reduced
- Balancing Redox Equations by Half Reactions Method

Balancing Equations

- Redox reactions don't follow normal rules for balancing equations because we also have to pay attention of the electron transfer.
- For example
- $Ce^{4+} + Sn^{2+} \rightarrow Ce^{3+} + Sn^{4+}$
- Is it balanced?
- No, look at the charges

Half reactions

- Half reactions are exactly what the sound like, half of the reaction.
- Half reactions also include electrons, e⁻, as reactants or products.
- So for
- $Ce^{4+} + Sn^{2+} \rightarrow Ce^{3+} + Sn^{4+}$
- we have
- $Ce^{4+} \rightarrow Ce^{3+}$
- $Sn^{2+} \rightarrow Sn^{4+}$

Determining # of electrons

- To determine how many electrons are added or lost look at the charges. For $Ce^{4+} \rightarrow Ce^{3+}$
- I have to decrease my charge by one so I must add an electron.
- $Ce^{4+} + e^- \rightarrow Ce^{3+}$
- For $Sn^{2+} \rightarrow Sn^{4+}$
- My charge increases by two, so electrons were lost.
- $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$

Simple Rule

- Electrons lost must equal electrons gained!
- So to make this work I have to double the cerium half reaction
- 2 Ce⁴⁺ +2 e⁻ →2 Ce³⁺
- $Sn^{2+} \rightarrow 2e^- + Sn^{4+}$
- Put our two half reactions back together to make a "whole" reaction again.
- 2 Ce⁴⁺ + Sn²⁺ \rightarrow 2 Ce³⁺ + Sn⁴⁺