

Le Châtelier's Principle

- whenever stress is applied to a system at equilibrium, a new equilibrium will be obtained to relieve this stress.
- stress is a change in temperature, pressure, or concentration of some component.
- This will change the rate of reaction of either the forward or backward reaction
 So you will see an increase in the
- concentration of the substances on one side
- of the equation, and a decrease on the other.This will "shift" the equation to the right or left.

Examples

- Endothermic reactions absorb heat, i.e. they need heat to react.
- If the solution is heated prior to the reaction (stress)...
- It will react more quickly
- So the equation will be forced to the right (product side)
- If the reaction is cooled, it will be forced to the left (reactant side)

Equilibrium

- Systems at equilibrium are still dynamic (changing). However, no NET CHANGE will be observed.
- A system is at equilibrium when the rate of the forward reaction is equal to the rate of the reverse reaction.

Changing concentration

- CO + 2 $H_2 \rightleftharpoons CH_3OH$
- If I add more reactant material (increasing the concentration of either CO or H₂) that will speed up the forward reaction causing this equilibrium to shift right, adding more product subtracting reactant.
- If I add more product material (CH₃OH) that will speed up the reverse reaction causing this to shift left

-			
Equilit	orium		
Add carb	on mon	oxide	
	CO +	2 H ₂ =	⇒ CH₃OH
Stress	+ S	0	0
Shift	-x	-2x	+x
Final	↑	\downarrow	↑
*where S the equil	is the a brium	amount	t of CO added to stress
Since the will spee reactant,	e stress d up the adding	was ac forwa produc	dded to the reactants, we rd reaction subtracting ct
*x is the	amount	that "s	hifts" to relieve the stress
*S is big	ger than	x with	any coefficient

If I add an acid to the equilibrium...

 $2 H_2 O \rightleftharpoons H_3 O^+ + OH^-$

More Le C	Châteli	er's	
• If I add a	n acid to	o the equ ⇒ H₂O⁺	illibrium + OH-
 Stress 	0	+S	0
 Shift 	+2x	-x	-x
 Final 	Ŷ	↑	\downarrow
Where \$	S is large	er than 2	х
 so addin only slight 	g acid w ntly incre	ill decreates the	ase the [OH⁻], H ₃ O⁺], and
increase	water.		

Different equation

- Adding ammonia, NH₃, to the equilibrium $2 \text{ NH}_3 \rightleftharpoons 3 \text{ H}_2 + \text{N}_2$
- Stress Change

• I IIIGI

Different equation Adding ammonia, NH₃, to the equilibrium $2 \text{ NH}_3 \rightleftharpoons 3 \text{ H}_2 + \text{N}_2$ Stress +S Change -2x +3x +x Final ↑ ↑ ↑ • *where S is larger than 2x Everything increases • Note that the amount H₂ increases 3x as much as N₂

With heat

- If I cool the following equilibrium
- Heat+ Co^{2+} + 4 Cl⁻ \rightleftharpoons CoCl₄²⁻
- Stress
- Shift
- Final

With heat

- If I cool the following equilibrium
- Heat+ Co^{2+} + 4 $Cl^- \rightleftharpoons CoCl_4^{2-}$ •
- Stress -S 0 0 0 Shift +x +4x -x
- Final \uparrow ↑
- \downarrow So cooling the solution will cause more
- Co2+ & Cl- and less CoCl42- to form

Law of chemical equilibrium

- For an equilibrium
- a A + b B ≓ c C + d D
- K = [C]^c[D]^d
- [A]^a[B]^b
- K is the equilibrium constant for that reaction.
- The [] mean concentration in molarity. Make sure those are square brackets and not parenthesis!!

Problem

2NH_{3 (g)} → N_{2 (g)} + 3H_{2 (g)}
Calculate the equilibrium constant for the above reaction if it comes to equilibrium with the following concentrations: N₂ = .59 M, H₂ = 3.1 M, and NH₃ = 1.03 M

Equilibrium by phase

- Equilibrium depends on the concentration of the reactants.
 We can calculate the concentration of
- a gas or of anything dissolved (aqueous).
- Insoluble solids or liquids won't have a concentration.
- They in essence are removed from the equilibrium.

So using that

- What would the equilibrium expression look like for the following reaction?
- 2 $H_2O_{2(I)} \rightleftharpoons 2 H_2O_{(I)} + O_{2(g)}$

We ignore the liquids (and solids).
K = [O₂]

Water

- 2 $H_2O_{(I)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$
- K_w = [OH⁻] [H₃O⁺] = 1x10⁻¹⁴
- K_w is the equilibrium constant for water, it equals 1 x 10⁻¹⁴ M
- This is the equation we were using earlier!