

Le Châtelier's Principle
- whenever stress is applied to a system at
equilibrium, a new equilibrium will be obtained
to relieve this stress.
- stress is a change in temperature, pressure,
or concentration of some component.
- This will change the rate of reaction of either
the forward or backward reaction
- So you will see an increase in the
concentration of the substances on one side
of the equation, and a decrease on the other.
- This will "shift" the equation to the right or left.

What this means...			
- By adding carbon monoxide			
		H_{2}	$\mathrm{CH}_{3} \mathrm{OH}$
- Stress	+S	0	0
- Shift	-x	-2x	+x
- Final			

- The overall amount of carbon monoxide has increased because S is always larger than x (with any coefficient).
- We decreased H_{2} by $2 x$
- We increased $\mathrm{CH}_{3} \mathrm{OH}$ by x

Examples

- Endothermic reactions absorb heat, i.e. they need heat to react.
- If the solution is heated prior to the reaction (stress)...
- It will react more quickly
- So the equation will be forced to the right (product side)
- If the reaction is cooled, it will be forced to the left (reactant side)

Equilibrium
Add carbon monoxide
*where S is the amount of CO added to stress the equilibrium
Since the stress was added to the reactants, we will speed up the forward reaction subtracting adding product
*S is bigger than x with_any coefficient

Law of chemical equilibrium

- For an equilibrium
- $a A+b B \rightleftharpoons c C+d D$
- $K=[C]^{c}[D]^{d}$
- $\quad[A]^{a}[B]^{b}$
- K is the equilibrium constant for that reaction.
- The [] mean concentration in molarity Make sure those are square brackets and not parenthesis!!

