

```
    pH equations
[]=concentration of, in molarity
pH=-log[H+}]\mathrm{ or pH = - log [H3O+
[H+}]=10-\textrm{pH}=[\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{}{+}
pOH = - log [OH-]
[OH-]= 10-00H
[H+][OH-] = K
pH+pOH=14
pOH is the reverse of pH
For pOH above 7 is acidic, below 7 is basic
```

 pH problems
 - What is the pH of a $2.4 \times 10^{-4} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$?
- What is the OH^{-}concentration?
- What is the POH ?

Sig Figs and pH

- The number of decimal places in a logarithmic value, pH or pOH , is equal to the number of significant figures in the number that we took the logarithm of, concentration.
- So $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathbf{2 . 4 5 \times 1 0 ^ { - 4 } \mathrm { M } 3 \text { sig figs }}$
- $\mathrm{pH}=-\log 2.45 \times 10^{-4} \mathrm{M}=3.611$

3 decimal places

- And $\mathrm{pOH}=14-3.611=10.389$

Backwards problem

- What is the $\mathrm{pOH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$
of a solution with a pH of 8.72?
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{\wedge}(-\mathrm{pH})$
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-8.72}$
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.9 \times 10^{-9} \mathrm{M}$
- $1.905 \ldots \times 10^{-9}\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$\square\left[\mathrm{OH}^{-}\right]=5.2 \times 10^{-6} \mathrm{M}$
- $\mathrm{pOH}+\mathrm{pH}=14$
- $\mathrm{pOH}=5.28$
pH problems
- What is the pH of a $2.4 \times 10^{-4} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$?
- $\mathrm{pH}=-\log 2.4 \times 10^{-4}$
- $\mathrm{pH}=3.62$
- What is the OH^{-}concentration?
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
- $2.4 \times 10^{-4}\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
- $\left[\mathrm{OH}^{-}\right]=4.2 \times 10^{-11} \mathrm{M}$
- What is the pOH?
- $\mathrm{POH}=-\log 4.16666 \times 10^{-11}$
- $\mathrm{pOH}=10.38$

Last one
- What is the $\mathrm{pH}, \mathrm{pOH}$ and $\left[\mathrm{OH}^{-}\right]$
of a solution with a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of
$2.7 \times 10^{-6} \mathrm{M}$?
$\mathrm{pH}=-\log 2.7 \times 10^{-6}$
$\mathrm{pH}=5.57$
[OH $]=3.7 \times 10^{-9} \mathrm{M}$
$\mathrm{POH}=8.43$

