

Base ionization equations

- Generically with the base "BOH"
- $\mathrm{BOH} \rightarrow \mathrm{B}^{+}+\mathrm{OH}^{-}$
- or
- $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}$
- Write the base ionization equations for
- $\mathrm{NaOH}, \mathrm{NH}_{3}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$

A special solution

- Acids and bases are ALWAYS in a water solution.
- Your body has water in it so they are always dangerous to living things.
- Bases are just as dangerous as acids.
- In low concentrations they are not that dangerous and found all over your house.

Acids and Bases

- Although they can be dangerous, acids and base do not react with or "eat" everything.
-Neither has an effect on glass for example.
urn litmus paper : Re D B lue
$\begin{array}{lll}\text { turn litmus paper } & \text { - Re } \mathrm{D} & \text { - }{ }_{\text {lue }} \text { lue } \\ \text { have a } \mathrm{pH} & \text { - less than } 7 \quad \text { - more than } 7\end{array}$
$\begin{array}{lll}\text { have a pH } & \text { - less than 7 } & \text { - more than } 7 \\ \text { taste } & \text { - sour } & \text { - bitter and feel slippery }\end{array}$
eact with \quad metals and \quad oils and acids bases

Definitions

- Acid- a proton $\left(\mathrm{H}^{+}\right)$donor [force feeder]
- Acids produce $\mathrm{H}_{3} \mathrm{O}^{+}$(hydronium) in water
- Base- a proton $\left(\mathrm{H}^{+}\right)$acceptor [thief]
- Bases produce OH^{-}(hydroxide) in water

Acid ionization equations

- Generically with the acid "HA"
- $\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$
- or
- $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
- Write the acid ionization equations for - $\mathrm{HF}, \mathrm{HNO}_{3}$ and $\mathrm{HCH}_{3} \mathrm{COO}$

Heat of solution

- Normally dissolving a substance is an exothermic process.
- You are normally increasing the state of entropy (measure of disorder)
- The the result of this is normally a release of heat.
- There are exceptions, dissolving ammonium nitrate is an endothermic process

Always do what you oughta ... - Always add acid to water

- Dissolving the acid in water releases heat.
- This is especially true for concentrated hydrochloric acid and sulfuric acid.
- If you have a lot of acid and a little water on top, the water typically boils quickly causing the hot acid to spray out.
- A lot of water on the bottom typically doesn't boil if the acid is added slowly enough.

Self dissociation of water.

- Some water will dissociate itself
- $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- in "pure" water you will find
- $\mathrm{H}_{3} \mathrm{O}^{+}$has concentration of $1 \times 10^{-7} \mathrm{M}$
- OH^{-}has concentration of $1 \times 10^{-7} \mathrm{M}$
Neutralization of an acid or
base.

Mixing acids and bases

- ~creates water
- $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- this is called neutralizing the solution
- a neutralized solution is no longer dangerous.
- It is now safe to touch.

Salts

- ~the byproduct of an acid and a base.
- $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
(base) (acid) (water) (salt)
- there are several more than just table salt.
- $\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KNO}_{3}$
- Acid Base water salt

Strong acids and bases

- The strong acids and bases completely dissociate in water.
- Most acids or bases will only react to a certain extent
- Strong acids/bases make the most amount of hydronium or hydroxide that they possibly can.

Danger!!!

- Strong and Weak acids and bases do NOT necessarily tell you how dangerous they are.
- Concentration is the most important factor for determining danger.
- Ammonia is a weak base, if it is highly concentrated it can burn you.
- Dilute hydrochloric acid (less than 1 M) is not particularly dangerous

