Acids and Bases

Chapter 17

A special solution

- Acids and bases are ALWAYS in a water solution.
- Your body has water in it so they are always dangerous to living things.
- Bases are just as dangerous as acids.
- In low *concentrations* they are not that dangerous and found all over your house.

Definitions

- Acid- a proton (H⁺) donor [force feeder]
 Acids produce H₃O⁺ (<u>hydronium</u>) in
- water
- Base- a proton (H⁺) acceptor [thief]
 Bases produce OH⁻ (<u>hydroxide</u>) in water

Base ionization equations Heat of solution Always do what you oughta ... Normally dissolving a substance is an Generically with the base "BOH" Always add acid to water exothermic process. Dissolving the acid in water releases heat. • BOH \rightarrow B⁺ + OH⁻ You are normally increasing the state of This is especially true for concentrated hydrochloric acid and sulfuric acid. or entropy (measure of disorder) • $B + H_2O \rightarrow BH^+ + OH^-$ The the result of this is normally a release of heat. If you have a lot of acid and a little water on • Write the base ionization equations for top, the water typically boils quickly causing There are exceptions, dissolving ammonium nitrate is an endothermic NaOH, NH₃ and Ca(OH)₂ the hot acid to spray out. A lot of water on the bottom typically doesn't boil if the acid is added slowly enough. process

1

Self dissociation of water.

- Some water will dissociate itself
- $\bullet H_2O + H_2O \rightarrow H_3O^+ + OH^-$
- in "pure" water you will find
- H_3O^+ has concentration of 1 x 10^{-7} M
- OH- has concentration of 1 x 10⁻⁷ M

- this is called neutralizing the solution
- a neutralized solution is no longer
- It is now safe to touch.

Gases can be created

- this depends on the reactants (not all will) sodium bicarbonate (baking soda) will always release the gas carbon dioxide when reacting with an acid.
- NaHCO₃ + $H_2SO_4 \rightarrow H_2O$ + NaHSO₄ + CO₂

Salt Gas

Titration

Titration is an experiment done commonly to determine the unknown concentration of an acid or a base.

During a titration a acid or base of unknown concentration called the analyte is placed under an apparatus, normally a burette or a buret, to add a acid or base of known concentration called the titrant.

The titrant is slowly added and the pH is monitored

- To neutralize a solution you will need to add an equal amount of H₃O⁺ / OH⁻ to what was already present.
- so that
- mol H₃O⁺ = mol OH⁻
- This is used if and <u>only if</u> you are at the equivalence point (completely neutral solution)!

Problem

- If 94 mL of 4.0 M NaOH neutralizes 6.0 L of an unknown strong acid, what was the H₃O⁺concentration of the unknown?
 4 M NaOH x .094 L = .376 mol NaOH
- .376 mol $H_3O^+/$ 6.0 L = .063 M H_3O^+

Strong acids and bases

- The strong acids and bases <u>completely</u> dissociate in water.
- Most acids or bases will only react to a certain extent
- Strong acids/bases make the most amount of hydronium or hydroxide that they possibly can.

Strong acids				
Acid	formula	Acid	Formula	
Hydrochloric acid	HCI	Sulfuric Acid	H ₂ SO ₄	
Hydrobromic acid	HBr	Nitric Acid	HNO ₃	
Hydriodic acid	HI	Perchloric Acid	HCIO ₄	

Strong bases

- All of group 1 and group 2 metals (not H) make strong bases.
- However, most of them are not very soluble.
- For example, Mg(OH)₂ is a saturated solution at 1.6 x10⁻⁴ M

		these make a lightning b on the periodic table!	
Name	Formula	Name	Formula
Sodium Hydroxide	NaOH	Calcium Hydroxide	Ca(OH) ₂
Potassium Hydroxide	КОН	Strontium Hydroxide	Sr(OH) ₂
		Barium Hydroxide	Ba(OH) ₂

Danger!!!

- Strong and Weak acids and bases do NOT necessarily tell you how dangerous they are.
- Concentration is the most important factor for determining danger.Ammonia is a weak base, if it is highly
- concentrated it can burn you.
- Dilute hydrochloric acid (less than 1 M) is not particularly dangerous

What is water

- Water is either an acid or base depending on the situation.
 Anything that is either an acid or a base is called *amphoteric*.
- Several things are amphoteric, like parts of you.

Donating Protons

-

- Hydrochloric acid (HCl) can donate 1 proton, so it is called a <u>monoprotic acid</u>.
 Sulfuric acid (H₂SO₄) can donate 2 protons, so it is called a <u>diprotic acid</u>.
 Phosphoric acid (H₃PO₄) can donate 3 protons, so it is called a <u>triprotic acid</u>.