Molality

- Molality is said molal and is represented by a
- molality= mol solute/ kg of solvent

Problem

■ 2.1 kg of sodium chloride is dissolved in 45 kg of water. What is the molality of the solution?

Problem

- 2.1 kg of sodium chloride is dissolved in 45 kg of water. What is the molality of the solution?
- 2100 g x 1 mol / 58.44 g = 35.93 mol NaCl
- m = 35.93...mol / 45 kg

Convert

■ Convert 1.2 M HNO₃ to molality if the density of the solution is 1.12 g/mL.

Convert

- Convert 1.2 M HNO₃ to molality if the density of the solution is 1.12 g/mL.
- 1.2 M = 1.2 mol HNO₃ /1 L solution
- 1.2 mol x 63.018 g / 1 mol = 75.6216 g HNO₃ 1 L of solution = 1000 mL x 1.12 g/1mL = 1120 g
- 1120 g of solution 75.6216 = 1044.3784 g of
- $m = 1.2 \text{ mol HNO}_3 / 1.0443784 \text{ kg}$
- = 1.1 m

Colligative Properties

- ~properties that depend only on the solute's concentration rather than what the solute is
- All solutions will freeze at a lower temperature and boil at a higher temperature.
 Boiling point elevation and freezing point depression are colligative properties

Where it is used

- Road salt goes into solution with snow, ice and water on the roads and lowers the freezing
- Water below the freezing point will not freeze and runs off the road

Boiling Water

- Students often assume that all boiling water is exactly at 100.0° C.
- That is normally not the case because of two factors; the air pressure, and anything dissolved in the water.
- Anything dissolved in the water will always raise the boiling point.

Calculations for phase change points

- ΔT = change in temperature
 Boiling point elevation = BP_{normal} + ΔT
- Where $\Delta T = K_b(m)i$
- Freezing Point Depression = $FP_{normal} \Delta T$
- Where $\Delta T = K_f(m)i$
- K_b is the ebulliscopic constant
- K_f is the cyroscopic constant
 m is the molality of the solution
- i is the Van't Hoff factor

Van't Hoff Factor (i)

- Colligative properties means it doesn't matter what
- Some things when dissolved dissociate (ionic compounds), which, if you don't care what the solute is technically would increase the molality.
- NaCl (s) →Na⁺ (aq) + Cl⁻ (aq)
 Sodium chloride dissociates into 2 things
- So it's Van't Hoff factor is 2
- C₆H₁₂O_{6(s)} → C₆H₁₂O_{6(sq)}
 Glucose is a covalent compound that doesn't dissociate, so it's Van't Hoff factor is 1

Freezing Point Depression and Boiling						
Point Elevation						
Solvent	Formula	Melting Point (°C)	Boiling Point (°C)	K _f (°C/m)	K _b (°C/m)	
Water	H ₂ O	0.000	100.000	1.858	0.512	
Acetic acid	$\mathrm{HC_2H_3O_2}$	16.60	118.5	3.90	3.08	
Benzene	C ₆ H ₆	5.455	80.2	5.12	2.53	
Chloroform	CH ₂ O	-63.5	61.3	4.68	3.63	
Carbon disulfide		-112	46.3	3.8	2.34	
Cyclohexane	C_6H_{12}	6.55	80.74	20.0	2.79	
Ethanol	С.Н.ОН	-1146	78.3	1.99	1.07	

Bottom of Chart Boiling point elevation = BP _nemal + ΔT Where $\Delta T = K_b (m)j$ Freezing Point Depression = $PP_{normal} - \Delta T$ Where $\Delta T = K_d(m)_j$ Dilution equation MV = MV Freezing Point Depression and Boiling Point Elevation

Boiling point problem

Determine the boiling point of a 2.8 m solution of water with aluminum chloride (AlCl₃) dissolved in

Boiling point problem

- Determine the boiling point of a 2.8 m solution of water with aluminum chloride (AlCl₃) dissolved in
- $K_b = .512 \text{ °C/m}$
- i = (Van't Hoff) AlCl₃ → Al³⁺ + 3 Cl⁻ = 4
- $\Delta T = K_b(m) i$
- $\Delta T = .512 \text{ °C/m} (2.8 \text{ m}) 4= 5.7$ $BP_{\text{water}} = 100.00 + 1.7 = 105.7 \text{°C}$

Another Boiling point problem

■ Determine the boiling point of a 1.7 m potassium nitrate (KNO₃) aqueous solution.

Another Boiling point problem

- Determine the boiling point of a 1.7 m potassium nitrate (KNO₃) aqueous solution.
- $i = (Van't Hoff) KNO_3 \rightarrow K^+ + NO_3^- = 2$
- $\Delta T = K_b(m) i$
- \blacksquare BP_{water} = 100.00 + 1.7 = 101.7° C

Freezing point problem

Determine the freezing point of a 2.1 m solution of water with calcium chloride (CaCl₂) dissolved in it.

Freezing point problem

- Determine the freezing point of a 2.1 m solution of water with calcium chloride (CaCl₂) dissolved in it.
 (Van't Hoff) CaCl₂ →Ca²⁺ + 2 Cl⁻ i= 3
- $\Delta T = K_f(m)i$
- $\Delta T = 1.858 \text{ °C/m} (2.1 \text{ m}) 3=12$ $FP_{\text{water}} = 0.00 11.7 = -12 \text{ °C}$

Salt the road

■ Determine the freezing point of a 21 kg sample of water with 1.1 kg of calcium chloride (CaCl₂) dissolved in it.

Salt the road

- Determine the freezing point of a 21 kg sample of water with 1.1 kg of calcium chloride (CaCl₂) dissolved in it.
- 1100 g CaCl₂ x 1 mol / 110.98 g = 9.911 mol m = 9.911... mol/21 kg = .472 m

- -(.47.2 m)

 (Van't Hoff) $CaCl_2 \rightarrow Ca^{2+} + 2 Cl^- i = 3$ $\Delta T = K_f(m)i$ $\Delta T = 1.858 (.4719)3 = 2.6$ $FP_{water} = 0.00 2.6 = -2.6^{\circ} C$