# Nutrition and units

# calories

- A calorie is the old chemistry metric unit for energy.
- A calorie is the amount of energy required to raised 1 g of water 1 degree Celsius.
- In science, there was a broad unification movement to make all sciences use the same units.
- A joule was the amount of energy commonly used in physics.
- \* It is the amount of energy required to accelerate a 1 kg object 1 m/s² for 1 m, or apply 1 N of force for 1 m.

#### Nutrition and Calories

- Calorie is an energy measurement just like joules.
- Calories reported on food labels are actually kilocalories (it does have to be capitalized).
- 1 Cal = 1000 cal = 4.183 kJ
- The calories in a food are the amount of energy released during the metabolism reaction of that food.



#### Elsewhere

• Other countries are switching their food labels to match the science standard.

#### Bomb Calorimeter

- In the past food, was placed in a bomb calorimeter, a sealed container to stop heat transfer, and burned to check the amount of energy released.
- The heat was used to heat water and it could be calculated.
- This led to some problems as certain things we eat are indigestible, but they are burnable



# Better calculations

- Now, the amount of proteins, carbohydrates, and fats are separated and measured.
- We can calculate the caloric content from that and get a much better measure of the energy content of food.

## Energy content in foods

- carbohydrate 4 Cal/g
- protein 4 Cal/g
- fat 9 Cal/g
- There is more you need from food than just energy (vitamins, minerals etc.).
- There is a certain amount of Calories you need to function.
- This amount differs for each person, and differs over time.
- Striking an appropriate balance between these is a healthy diet.

# Continued...

- The energy from food is used by your body for everything it does (powering muscles, building new cells, controlling body temperature etc.).
- If you take in less than you need your body cannot function properly (car without gas).
- If you take in more than you use, it is stored as fat or glycogen, organic compounds that can be digested later.

### Storage

- The ability of your body to store energy is NOT bad
- You would have to eat every hour of your life to survive if you couldn't store energy.
- Excess long term storage of fat is not healthy for your body.
- Several methods of removing the excess fat are not healthy either.

# Enthalpy

- ~A measure of heat energy content of a reaction
- · The symbol for enthalpy is H
- Enthalpy can only be measured as a change from a standard state.
- Negative values mean the energy is released (exothermic).
- Positive value mean the energy is absorbed (endothermic).

#### How is that different from q

- · q is the change in heat energy.
- Enthalpy is the change in heat energy per mole for a process or reaction.
- $\Delta H = q/n$
- · so it is measured in J/mol
- $2 H_2 + O_2 \rightarrow 2 H_2O$   $\Delta H = -572 \text{ kJ/mol}$
- This means if the reaction is run once with 2 moles of H<sub>2</sub> and one mole of O<sub>2</sub>, 572 kJ of energy are released

# Hess's Law

- ~In going from a set of reactants to a set of products the change in enthalpy will be the same regardless of how it changed.
- There is more than one way for a set of reactants to produce a set of products. The overall energy change will be the same no matter how you get there.

# Hess's Law

- In essence, sometimes different equations can added together to represent another equation.
- In this case, you would add the enthalpy of reaction,  $\Delta H$ , of the equations to determine value of the new equation.
- Compounds that appear on both reactant and product side will cancel out.

#### Hess's Law example

- $N_2 + O_2 \rightarrow 2 \text{ NO}$   $\Delta H = 180 \text{ kJ}$
- 2NO + O<sub>2</sub>  $\rightarrow$  2NO<sub>2</sub>  $\Delta H = -112 \text{ kJ}$ • 68 kJ
- Or
- $N_2 + 2 O_2 \rightarrow 2 NO_2$   $\Delta H = 68 \text{ kJ}$

#### Manipulating enthalpy values

- If an equation needs to be doubled, tripled, halved... you multiply the value of the enthalpy by that number.
- $2 H_2 + O_2 \rightarrow 2 H_2O$   $\Delta H = -572 \text{ kJ/mol}$
- $4 H_2 + 2 O_2 \rightarrow 4 H_2O$   $\Delta H = -1144 \text{ kJ/mol}$
- $H_2$  + ½  $O_2 \rightarrow H_2O$   $\Delta H$  = -286 kJ/mol
- If an equation needs to be reversed the magnitude is the same, but the sign is opposite

#### Another Hess's Law example

 $C_{\text{graphite}}$  +  $O_2 \rightarrow CO_2$   $\Delta H$  = -394 kJ/mol  $C_{\text{diamond}}$  +  $O_2 \rightarrow CO_2$   $\Delta H$  = -396 kJ/mol •Calculate  $\Delta H$  for the conversion of graphite to diamond:

#### Answer to Hess's Law example

This equation  $C_{\text{graphite}}(s) \rightarrow C_{\text{diamond}}(s)$  Reverses the diamond  $C_{\text{graphite}} + O_2 \rightarrow CO_2$   $\Delta H = -394$  kJ/mol  $CO_2 \rightarrow C_{\text{diamond}} + O_2$   $\Delta H = +396$  kJ/mol  $CO_2 \rightarrow C_{\text{diamond}} + O_2$   $\Delta H = 2$  kJ/mol  $CO_2 \rightarrow C$ 

# Example problem

- Hydrazine,  $N_2H_4$ , is a colorless liquid used in rocket fuel. What is the enthalpy of the reaction for the formation of hydrazine
- $N_2 + 2 H_2 \rightarrow N_2 H_4 \Delta H = ?$
- Given the equations
- $\begin{array}{c} \bullet \ \, N_2H_4 + O_2 \longrightarrow N_2 + 2 \ H_2O \ \, \Delta H = -622 \ kJ/mol \\ \bullet \ \, 2 \ H_2 + O_2 \longrightarrow 2 \ H_2O \qquad \quad \, \Delta H = -572 \ kJ/mol \\ \end{array}$

#### Answer

- $N_2$  + 2  $H_2O \rightarrow N_2H_4$  +  $O_2$   $\Delta H$  = 622 kJ/mol 2  $H_2$  +  $O_2$   $\rightarrow$  2  $H_2O$   $\Delta H$  = -572 kJ/mol
- $N_2 + 2 H_2 \rightarrow N_2 H_2$

ΔH = 50. kJ/mol

# Another

$$\begin{split} &C_2H_4+H_2 \rightarrow C_2H_6\\ &Calculate the enthalpy for the above reaction\\ &using the following enthalpy values.\\ &C_2H_4+3O_2 \rightarrow 2\text{CO}_2+2\text{H}_2\text{O} \quad \Delta\text{H} = -1411 \text{ kJ/mol}\\ &2\ C_2H_6+7\ O_2 \rightarrow 4\text{CO}_2+6\text{H}_2\text{O}\ \Delta\text{H} = -3120 \text{ kJ/mol}\\ &H_2+\frac{1}{2}\ O_2 \rightarrow H_2\text{O} \qquad \Delta\text{H} = -286 \text{ kJ/mol} \end{split}$$

- Calculate the enthalpy for the above reaction using the following enthalpy values.  $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$   $\Delta H = -1411 \text{ kJ}$   $2CO_2 + 3H_2O \rightarrow C_2H_6 + 7/2 O_2$   $\Delta H = 1560 \text{ kJ}$

- $H_2 + \frac{1}{2} O_2 \rightarrow H_2O$  $\Delta H = -286 \text{ kJ}$
- $\mathrm{C_2H_4} + \mathrm{H_2} \rightarrow \mathrm{C_2H_6}$  $\Delta H = -137 \text{ kJ}$