

Convert

- Convert a 2.3 M of water solution of aluminum nitrate $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ to mole fraction of aluminum nitrate if the density of the solution is $1.14 \mathrm{~g} / \mathrm{mL}$.
- $2.3 \mathrm{M}=2.3 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} / 1 \mathrm{~L}$ solution
- $2.3 \mathrm{~mol} \times 213.01 \mathrm{~g} / 1 \mathrm{~mol}=489.923 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
- $1 \mathrm{~L}=1000 \mathrm{~mL} \times 1.14 \mathrm{~g} / 1 \mathrm{~mL}=1140 \mathrm{~g}$ solution
- $1140 \mathrm{~g}-489.923 \mathrm{~g}=650.077 \mathrm{~g}$ water
- $650.077 \mathrm{~g} \mathrm{x} 1 \mathrm{~mol} / 18.016 \mathrm{~g}=36.0833 \mathrm{~mol}$
- $\chi=2.3 \mathrm{~mol} /(2.3+36.0833) \mathrm{mol}=.060$
Another
Convert a 1.4 M solution of strontium sulfate,
SrSO_{4}, in water to mole fraction if the density of
the solution is $1.24 \mathrm{~g} / \mathrm{mL}$.
Another
Convert a 1.4 M solution of strontium sulfate,
SrSO_{4}, in water to mole fraction if the density of
the solution is $1.24 \mathrm{~g} / \mathrm{mL}$.
$1.4 \mathrm{M}=1.4 \mathrm{~mol} \mathrm{SrSO}$
4
-1.4 L solution
$-1.4 \mathrm{~mol} \times 183.68 \mathrm{~g} / 1 \mathrm{~mol}=257.152 \mathrm{~g} \mathrm{SrSO}$
4
Other way
Convert a mole fraction .032 of a $\mathrm{K}_{2} \mathrm{CO}_{3}$
solution in water to molarity if the density is
$1.08 \mathrm{~g} / \mathrm{mL}$.

[^0]
[^0]: Other way
 Convert a mole fraction . 032 of a $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution in water to molarity if the density is $1.08 \mathrm{~g} / \mathrm{mL}$.

 - $0.032 \mathrm{~K}_{2} \mathrm{CO}_{3}=.032 \mathrm{~mol} / 1 \mathrm{~mol}$ solution
 - $\mathrm{Mol} \mathrm{H} \mathrm{H}_{2}=1.00-.032=.968 \mathrm{~mol}$
 - $.032 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3} \times 138.21 \mathrm{f} \mathrm{g} / \mathrm{mol}=4.422 \mathrm{~g}$
 - $.968 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times 18.016 \mathrm{~g} / \mathrm{mol}=17.439 \mathrm{~g}$
 - Total solution $=17.439+4.422=21.86 \mathrm{~g}$
 - $1.08 \mathrm{~g} / \mathrm{mL}=21.86 \mathrm{~g} / \mathrm{V}, \mathrm{V}=20.24 \mathrm{~mL}$
 $-\mathrm{M}=.032 / .02024=1.6 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$

