

Cooling object

7.2 mol of H_2 gas is cooled from 319 K to 299K, how much heat was lost? q = nC∆T

Cooling object

e 7.2 mol of H₂ gas is cooled from 319 K to 299K, how much heat was lost? q = nC∆T q = 7.2mol (28.8J/molK)(299-319K) q = -4147.2 J • q = -4100 J 4.1 kJ was <u>lost</u> negative means the energy was lost instead of gained.

Energy is never destroyed!!!

- 1st law of thermodynamics In a <u>closed</u> system, if you put 2 objects of different temperatures
- together... • the heat will go from the hotter
- object to the cooler object.
- the q lost by one object will be the q gained by the other object.
- q _{lost} = q _{gai}

continuing with the H₂ from the earlier problem • The hydrogen was put in 9.179

- moles of a substance at 274.4 K and it heated to 280.4 K, what was the substance? • q _{lost}= 4147.2 J
- Ð • 4147.2 = 9.179 mol C (6.0K) • C = 75 J/K mol
- water (liquid)

Another problem

 778 mol of tungsten at 68° C is dropped in water at 25° C, the system comes to equilibrium (both temperatures are equal) at 35° C. How much water was present?

Another problem

.778 mol of tungsten at 68° C is dropped in water at 25° C, the system comes to equilibrium (both temperatures are equal) at 35° C. How much water was present? $q_{\text{lost}} = .778 \text{ mol}(24.2)(-33) = -621...$ = 621.3108 = n (75.3)(10) • n = .83 mol H₂O

A proble You add 98.0° C te	em 14.2 g of a metal at 5 126 g of water at 17.2°
C. The sy equilibriu the meta	ystem comes to Im at 19.1° C. What is I?
Miost M C	□q _{gained} □m □c
ΔT T _f T _i	□∆T □T _f □T _i

A problem • You add 14.2 g of a metal at 98.0° C to 126 g of water at 17.2° C. The system comes to equilibrium at 19.1° C. What is the metal?					
4 9	lost	□q _{ga}	ined		
	14.2 g	j ⊡m	126 g		
	_ ?				
	-78.9				
	f 19.1°	C □T _f	19.1º C		
	'i 98.0⁰	C DT _i	17.2º C		

Work

q = m c ∆ T Water side q = 126 g (4.183) 1.9K = 1001.4102 J = -1001.4102 J lost -1001...= 14.2 g (c) -78.9 K c = .89 J/g K Most likely aluminum: How close your answer is to the actual answer depends on how good your lab technique is. Most likely aluminum.

A different problem You add 63 g of a metal at 101.0° C to 132 g of water at 19.0° C. The system comes to equilibrium at 20.2° C. What is the metal? b q_{lost} m □q_{gained} 132 g 63 g c 4.183 • A T 20.2 ° C □∆ T U 20.2° C 19.0° C

Work

 $q = m c \Delta T$ Water side q = 132 g (4.183) 1.2K = 662.5872 J = -662.5872 J lost -662...= 63 g (c) -80.8 K

c = .13 J/g K Either lead or gold.

Check for color to determine which

Another

5.25 mol of He at 34° C is mixed with 24.3 mol of H_2 and the system comes to equilibrium at 14° C, what was the initial temperature of the hydrogen?

Another

5.25 mol of He at 34° C is mixed with 24.3 mol of H_2 and the system comes to equilibrium at 14° C, what was the initial temperature of the hydrogen?

q _{lost He} = 5.25 mol(25.2)(287-307) 9 lost He = -2646 J

2646 J = 24.3 mol(28.8) (287- T_{i H2}) T_{i H2} = 283 K (10.° C)

More

More

• 23 g of nickel at 99.8° C is dropped in 121 g of water at 20.3° C. What is the final temperature?

-23g(.444)(99.9-T_f) =121g(4.183)(20.3-T_f)

• T_f = 21.8° C

Problems

2.28 mol of aluminum at 66.0° C is dropped in water at 28.0° C, the system comes to equilibrium (both temperatures are equal) at 34.0° C, how much water was present?

Problems

2.28 mol of aluminum at 66.0° C 2.26 mol of aluminum at 66.0° C is dropped in water at 28.0° C, the system comes to equilibrium (both temperatures are equal) at 34.0° C, how much water was present?

q _{lost} = 2.28 mol(24.2)(-32) = -1765.632 = -(n (75.3)(6.0)) n = 3.9 mol H₂O

Last One

• How many grams of silver at 50° C would be required to heat 21 mol of water from 12° C to 32° C (bring the system at equilibrium at 32° C)?

Last One

How many grams of silver at 50° C would be required to heat 21 mol of water from 12° C to 32° C (bring the system at equilibrium at 32° C)?
g = 24 • q = 21 mol(75.3)(20K) = 31626 J

• q = - 31626 J = m (.233) (-18)

• m = 7500 g or 7.5 kg