

Dilution Equation

- MV = MV
- Molarity (volume) before dilution
$=$ molarity (volume) after dilution
- How many liters of $12 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ do you need to make 1.2 L of .75 M ?

Dilution Equation - MV = MV - Molarity (volume) before dilution = molarity (volume) after dilution - How many liters of $12 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ do you need to make 1.2 L of .75 M ? - $12 \mathrm{M}(\mathrm{V})=.75 \mathrm{M}(1.2 \mathrm{~L})$ - $\mathrm{V}=.075 \mathrm{~L}(75 \mathrm{~mL})$

Problem

- 35 g of NaCl is dissolved in 115 g of water, what is the mass percent? What is the molarity if the final solution has a density of $1.1 \mathrm{~g} / \mathrm{mL}$?
Problem
.35 g of NaCl is dissolved in 115 g of water,
what is the mass percent? What is the
molarity if the final solution has a density of
$1.1 \mathrm{~g} / \mathrm{mL}$?
$\square 35 \mathrm{~g} /(35 \mathrm{~g}+115 \mathrm{~g}) \times 100$
$\square 23 \%$
$\square 35 \mathrm{~g} \times 1 \mathrm{~mol} / 58.44 \mathrm{~g}=.5989 \mathrm{~mol} \mathrm{NaCl}$
$\square 150 \mathrm{~g} \times 1 \mathrm{~mL} / 1.1 \mathrm{~g}=136.36 \mathrm{~mL}=.13636 \mathrm{~L}$
$\square \mathrm{M}=.5989 \mathrm{~mol} / .13636 \mathrm{~L}$
$\square \mathrm{M}=4.4 \mathrm{M}$
Problem
35 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is dissolved in 165 g of
solution, what is the mass percent? What is
the molarity if the final solution has a density
of $1.2 \mathrm{~g} / \mathrm{mL}$?

Problem

- 35 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is dissolved in 165 g of solution, what is the mass percent? What is the molarity if the final solution has a density of $1.2 \mathrm{~g} / \mathrm{mL}$?
- $35 \mathrm{~g} /(165 \mathrm{~g}) \times 100$
- 21 \%
- $35 \mathrm{~g} \mathrm{x} 1 \mathrm{~mol} / 261.32 \mathrm{~g}=.1339 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

■ $165 \mathrm{~g} \times 1 \mathrm{~mL} / 1.2 \mathrm{~g}=137.5 \mathrm{~mL}=.1375 \mathrm{~L}$
$■ M=.1339 \mathrm{~mol} / .1375 \mathrm{~L}$

- $\mathrm{M}=0.98 \mathrm{M}$
Convert
- Convert $1.2 \mathrm{M} \mathrm{CuSO}_{4}$ solution to mass
percent, if the solution has a density 1.1
$\mathrm{~g} / \mathrm{mL}$.

Convert - Convert $1.2 \mathrm{M} \mathrm{CuSO}_{4}$ solution to mass percent, if the solution has a density 1.1 g / mL. - $1.2 \mathrm{M}=1.2 \mathrm{~mol} \mathrm{CuSO}_{4} / 1 \mathrm{~L}$ solution - $1.2 \mathrm{~mol} \times 159.62 \mathrm{~g} / 1 \mathrm{~mol}=191.544 \mathrm{~g}$ - $1 \mathrm{~L}=1000 \mathrm{~mL} \times 1.1 \mathrm{~g} / 1 \mathrm{~mL}=1100 \mathrm{~g}$ of solution - Mass percent $=191.544 \mathrm{~g} / 1100 \mathrm{~g} \mathrm{x100}=$ 17 \%

