

Electron's role in reactivity

- Chemical bonds are a sharing or transfer of electrons.
- The number and placement of electrons in an atom determine how reactive it is.
- Na (metal) has 11 e⁻ and is extremely reactive. (explodes in water)
- Na⁺ has 10 e⁻ and is found in table salt (not that reactive)

Electrons are in orbitals at energy levels from the nucleus

- The orbitals are separate shells (like layers) where the electrons are most likely to be found.
- For reactivity, the most important electrons are in the outermost shell.
- Valence electrons- electrons in the outermost shell

Shortcut to determining the number of valence electrons

- Everything in group 1 has 1 valence electron (H, Li, Na, K, Rb, Cs, Fr)
- Everything in group 2 has 2 valence electrons
- Ignore the middle part for now (transition metals and rare earth elements).
- Everything in group 13 has 3 valence electrons.
- Groups 14-18 have 4-8 valence electrons respectively

How to figure out where all the electrons are

- There are 4 types of orbitals s, p, d, and f
- Each shell can hold:
 - -s-2
 - p-6
 - -d-10
 - f-14
- In the first energy level contains s, the 2nd contains s and p, the 3rd contain s, p and d, the 4th contains s, p, d, and f

- before you can fill in a "d orbital" you have to fill in the "s orbital" in the energy level above it.
- You must skip an "f orbital" until you have filled in the "s orbital" 2 energy levels above it.