

Temperature changes compared to heat energy added

- Remember *this assumes NO chemical changes
- the more heat added the more temperature change.
- *Unless we are at a phase change point!!
- The more matter present the less the temperature will change.
- The type of matter present also has an effect on the temperature change.

Heat capacity

- ~the rate of temperature change compared to the amount of heat energy added (or removed) with no chemical change for a specific
- · Every substance absorbs heat differently.
- Applying the same amount of heat to equal amounts of iron and water their rate of temperature change will differ.
- (The pan gets hotter much faster than the water)

Molar heat capacity

- · We will mainly use molar heat capacity, which is the rate of temperature change per mole.
- · It's symbol is C
- It is measured in J/(K mol)
- These will normally be givens in the problem.

Specific Heat Capacity

- Same idea as molar heat capacity, but it is measured per gram as opposed to per mole.
- It is necessary if you don't know what the metal is you are working with.
- · Its symbol is c (its is written as "s" in your book, for the AP test it is c).
- It is measured in J /(K g)

Table of molar heat capacities

				_ D /
2	Substance	C	Substance	c
	Water (Liquid)	75.3 J / K mol	Helium	25.2 J / K mol
	Water (Gas)	36.8 J / K mol	Hydrogen	28.8 J / K mol
	Water (Solid)	38.09 J / K mol	Nitrogen	29.1 J / K mol
	Lead (Solid)	26.7 J / K mol	Aluminum	24.2 J / K mol
	Lead (Liquid)	27.4 J / K mol	Tungsten	24.2 J / K mol
	Iron	25.1 J / K mol	Octane	254 J / K mol
	Silver	25.3 J / K mol	NaCl	50.5 J / K mol
	Cobalt //	50.6 J / K mol	Nickel	26.1 J / K mol
	Silicon	19.7 J / K mol	Zinc	25.2 J / K mol
	Cadmium	25.6 J / K mol	Gold	25.42 J / K mol

Table of specific heat capacities					
Substance		Substance	C		
Water (Liquid)	4.183 J/K g	Helium	5.193 J/K g		
Water (Gas)	2.080 J/K g	Hydrogen	14.30 J/K g		
Water (Solid)	2.05 J/K g	Nitrogen	1.04 J/K g		
Lead (Solid)	0.129 J/K g	Aluminum	0.891 J/K g		
Lead (Liquid)	0.132 J/K g	Tungsten	.132 J/K g		
Iron	0.449 J/K g	Octane	2.22 J/K g		
Silver	0.233 J/K g	NaCl	.864 J/K g		
Cobalt	0.858 J/K g	Nickel	0.444 J/K g		
Silicon	0.701 J/K g	Zinc	0.388 J/K g		
Cadmium	0.228 J/K g	Gold	.129 J/K g		

Throwing it all into one equation The symbol for heat energy is q (J)

- Molar heat capacity is C (J/mol K)
- Temperature is T, change in temperature is ΔT (K)
- ΔT is calculated by final temp-initial temp (T_f-T_i)
- q=nC <u>\</u>\D
- $q = n C (T_f T_i)$

--Or-- The symbol for heat energy is q (J) • specific heat capacity is c (J/ g K)

- Temperature is T, change in temperature is ΔT (K)
- ΔT is calculated by final temp-initial temp $(T_f T_i)$
- The symbol for mass m (g)
- q = m c ∆T
- $q = m c (T_f T_i)$

- If 3940 J of energy is added to 43.9 mol of tungsten at 265 K, what will the final temperature be?
- q = n C ΔT

Using this equation

- If 3940 J of energy is added to 43.9 mol of tungsten at 265 K, what will the final temperature be?
- q = n C ∆T
- 3940 J = 43.9 mol (24.2 J/K mol) (T_f 265 K)
- T_f = 269 K
- *Always make sure all units agree, I will include several conversions in these problems.

And the other...

- 14.2 g of an unknown metal is heated with 998 J of energy. The temperature rises from 287.2 K to 366.1K, what is the metal?
- q = m c ∆T

And the other...

- 14.2 g of an unknown metal is heated with 998 J of energy. The temperature rises from 287.2 K to 366.1K, what is the metal?
- q = m c ∆T
- 998 J = 14.2 g c (366.1-287.2)
- c = .891 J/gK
- It is closest to aluminum on our list.

Just warming up

- 259 mol of sodium chloride is heated from 35° C to 68° C, how much heat was added?
- q = n C \(\Delta T \)

Just warming up

- 259 mol of sodium chloride is heated from 35° C to 68° C, how much heat was added?
- q = n C ΔT
- 259mol (50.5J/molK)(341K 308K) = q
- 259mol (50.5J/molK)(33K) = q
- q = 430,000 J or 430 kJ

Last one

• If 3.87 kJ of heat is added to silver at 21°C and it heats to 74°C, how many moles were present?

Last one

- If 3.87 kJ of heat is added to silver at 21°C and it heats to 74°C, how many moles were present?
- q = n c ΔT
- 3870 J = n 25.3 J/mol K (53 K)
- n = 2.9 mol