Subatomic Particles

Subatomic Particles

- Subatomic particles-particles that are smaller than an atom, make up an atom
- > Protons-positive particles
- > Neutrons-neutral particles
- > Electrons-negative particles

Location of particles

- Protons and neutrons are found in the nucleus of the atom. Dense, central area of an atom.
- Electrons are buzzing around the nucleus in the electron cloud or shell.
- The <u>nucleus</u> makes up <u>99.99%</u> of the <u>mass</u> of the atom.
- You compared to pocket lint
- The <u>nucleus</u> is <u>1/100,000</u> of the <u>volume</u> of an atom. The <u>volume</u> is comprised by the <u>electron cloud</u>.
- > a marble compared to a football stadium

Mass of particles

- Since subatomic particles are so small they cannot be measured in grams
- instead they are measured in atomic mass units or amu
- > 1 amu = 1.61x10⁻²⁴ g
- remember 1 g is about the mass of a paper clip

Table of particles

name	symbol	charge	location	mass
protons	p⁺	positive	nucleus	1 amu
neutrons	nº	neutral	nucleus	1 amu
electrons	e⁻	negative	electron shell	.0006 amu

Determining the number of subatomic particles in an atom

1

Determining the number of protons

- Atomic number (the number the periodic table is arranged by) is the number of protons in an atom.
- This number <u>cannot</u> change for a given element without changing the element.
- Oxygen will always have 8 p⁺, He will always have 2 p⁺.

Determining electrons

- If the atom is neutral, the number of protons equal the number of electrons.
- > Therefore copper has 29 e⁻
- ➢ Krypton has 36 e⁻
- Electrons are the easiest to add or remove from an atom.
- This number can be different from atom to atom

lons

- Charged Particles (atoms that are not neutral)
- They can be made by changing the number of electrons NOT protons!!
- Sr²⁺ or Sr⁺⁺ means strontium with a 2+ charge on it.
- Strontium with 38 protons and 36 electrons
- > O²⁻ or O --
- > Oxygen with 8 protons and 10 electrons

Determining the number of neutrons in an atom

- > The atomic mass number is the number of protons + the number of neutrons.
- > mass number atomic number = # of n°
- Aluminum has a mass number of 27 and an atomic number of 13, how many neutrons?
- > 14
- The number of neutrons is slightly variable in a given element.

Number of particles in an atom

- Chlorine has a mass number of 35 and an atomic number of 17, how many neutrons, protons and electrons?
- > nº = 18, e⁻ = 17, p⁺ = 17
- Neon has a mass number of 20 and an atomic number of 10 how many neutrons, protons and electrons?
- > n° = 10, e⁻ = 10, p⁺ = 10

Number of particles in an ion

 <u>Ion</u>- charged particle (atom with a different number of electrons)

Cl⁻ mass number- 35 atomic number- 17 $n^{\circ} = 18$, e⁻ = 18, p⁺ = 17 Be²⁺ mass number- 9 atomic number- 4 $n^{\circ} = 5$, e⁻ = 2, p⁺ = 4 B³⁺ mass number- 11 atomic number- 5

Atomic number	Mass Number	p^+	nº	e⁻
			16	15
	4	2		
9	19			

Atomic number	Mass Number	p ⁺	nº	e-
15	31	15	16	15
2	4	2	2	2
9	19	9	10	9

Ion Problem						
	Atomic number	Mass Number	p ⁺	nº	e-	
O ²⁻	8	16			10	
Fe ³⁺	26	56	26			
Cl-	17	37	17	lie		
$(\mathbf{O}) (\mathbf{O})$						

	Ion Problem						
	Atomic number	Mass Number	p^+	nº	e⁻		
O ²⁻	8	16	8	8	10		
Fe ³⁺	26	56	26	30	23		
Cl-	17	37	17	20	18		

Back to neutrons being slightly variable

≻ Isotope

- > ~Atoms of the same element with a different number of neutrons.
- If you grabbed 100 Mg atoms you would find 30 had 13 n° and 70 had 12 n°.
- > 70% of the atoms have a mass of 24 amu, 30% have a mass of 25 amu.

Decimal Mass numbers

- > On the periodic table, mass numbers are decimals.
- > They are averages.
- ≻ Mg

Another example

- > Carbon
- > out of 200 carbon atoms...
- > 199 would have a mass of 12
- > 1 would have a mass of 14
- > so the mass number would be...

te mass 12x 199 = 2388 $14 \times 1 = 14$ 2402/200 = 12.01 amu

Quick Review

- <u>protons</u>- atomic number =# of p⁺, this is the only number that cannot change for an element.
- <u>electrons</u>- if the atom is neutral then # of p⁺= # of e⁻. If it has a charge change this number to agree.
- > <u>neutrons</u>- mass number atomic number = # of n°
- Do <u>not</u> use the mass number from the periodic table.