Molarity Problems

Molarity = mol/L

Molarity = moles of solute / Liters of solution

[A] = square brackets mean concentration in molarity of A

n = number of particles, moles

V = volume, liters

Molarity problems

How many moles of HCl are in 125 mL of 2.5 M HCl?

Molarity problems How many moles of HCl are in 125 mL of 2.5 M HCl? $[HCl] = \frac{n}{V}$ 2.5 M = $\frac{n}{0.125 L}$ n = .31 mol HCl ----Or---2.5 mol HCl 125-of soln = .31 mol HCl 15-of soln.

Here we go

What concentration solution would be prepared if 39 g of Ba(OH)₂ were mixed in a 450 mL solution?

Here we go

 What concentration solution would be prepared if 39 g of Ba(OH)₂ were mixed in a 450 mL solution?

 39 g Ba(OH)₂
 1 mol Ba(OH)₂

 = .2276 mol Ba(OH)₂

 171.316 g Ba(OH)₂

M = mol/L .2276 mol Ba(OH)₂ =.51 M Ba(OH)₂ .45 L of solution =.51 M Ba(OH)₂

More

For a lab in this chapter, I need to make .60 L of 3.0 M NaOH, what mass of NaOH did I need?

More

For a lab in this chapter, I need to make .60 L of 3.0 M NaOH, what mass of NaOH did I need?

- .6 L x 3.0 M NaOH = 1.8 mol NaOH
- 1.8 mol NaOH x 39.998 g/mol

= 72 g NaOH

Molarity Problems

A 0.24 M solution of Na₂SO₄ contains 0.36 moles of Na₂SO₄. How many liters were required to make this solution?

	Molarity Problems			
-	A 0.24 M solution of Na-SO	contains 0.36		
	moles of Na_2SO_4 . How many liters were			
	required to make this solutio	n?		
	0.36_mot Na ₂ SO ₄	1 L soln		
		0.24 mot		
	= 1.5 L Na ₂ SO ₄			
	- 2 +			

 $\begin{array}{l} \underline{AgNO_3 + BaCl_2 \rightarrow AgCl + Ba(NO_3)_7} \\ \hline \\ Balance the equation. If 1.2 L of .50 M \\ \underline{AgNO_3} \text{ is reacted completely, what} \\ \hline \\ molarity solution of Ba(NO_3)_2 will be \\ created if the volume increased to 1.5 L? \end{array}$

HNO₃ + Zn \rightarrow H₂ + Zn(NO₃)₂ If you have .65 L of 1.2 M HNO₃ and you react it completely what volume of H₂ gas will you produce at STP?

Ľ			
	2 HNO ₃ +	$Zn \rightarrow H_2 + Z$	$Zn(NO_3)_2$
	If you have	.65 L of 1.2 M	HNO3 and you
	react it completely what volume of H ₂ gas		
	will you produce at STP?		
	$1.2 \text{ M HNO}_3 \text{ x}$.65 L = .78 mol HNO ₃		
	. 78 mol HNO ₃	1 mol H ₂	- 20 mol H
			59 mor 11 ₂
		2 mol HNO ₃	
	.39 mol H ₂	22.4 L at STP	= 8.7 L at STP
		1 mol Ha	

HNO₃ + Zn \rightarrow H₂ + Zn(NO₃)₂ If you have .65 L of 1.2 M HNO₃ and you react it completely, what conc. of Zn(NO₃)₂ will be left if the volume increases to .75 L?

2 Fe + 3 H ₂ SO ₄ \rightarrow Fe ₂ (SO ₄) ₂ + 3 H ₂		
If $350 \text{ mL of } 2.3 \text{ MH}_2\text{SO}_4$ is completely		
reacted, what is the volume of hydrogen gas		
produced at 24°C and 114 kPa?		
.35 L x 2.3 M = .805 mol H ₂ SO ₄		
$1 \text{ mol } H_2 SO_4$ 1 mol H_2		
= =.805 mol H ₂		
PV = nRT		
$114 \text{ kPa V} = .805 \text{ mol} (8.31) 297 \text{ K} = 17 \text{ L H}_2$		